Niall Macquaide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1928956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphodiesterase type 4 anchoring regulates cAMP signaling to Popeye domain-containing proteins. Journal of Molecular and Cellular Cardiology, 2022, 165, 86-102.	1.9	11
2	Electrophysiological heterogeneity in large populations of rabbit ventricular cardiomyocytes. Cardiovascular Research, 2022, 118, 3112-3125.	3.8	13
3	PO-614-03 ALTERED SUBCELLULAR CALCIUM RELEASE IN THE HEART FAILURE ATRIA. Heart Rhythm, 2022, 19, S104.	0.7	Ο
4	<scp>SUMOylation</scp> does not affect cardiac troponin I stability but alters indirectly the development of force in response to Ca ²⁺ . FEBS Journal, 2022, 289, 6267-6285.	4.7	2
5	Activation of RyR2 by class I kinase inhibitors. British Journal of Pharmacology, 2019, 176, 773-786.	5.4	12
6	3D dSTORM imaging reveals novel detail of ryanodine receptor localization in rat cardiac myocytes. Journal of Physiology, 2019, 597, 399-418.	2.9	42
7	Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons. Cardiovascular Research, 2018, 114, 1512-1524.	3.8	47
8	High-throughput Study of Rabbit Ventricle Action Potential Populations in MI Model. Biophysical Journal, 2018, 114, 625a.	0.5	0
9	Super Resolution Imaging of Ryanodine Receptor Cluster Morphology in Rabbit and Human Atrial Myocytes. Biophysical Journal, 2018, 114, 621a.	0.5	2
10	Dyadic Plasticity in Cardiomyocytes. Frontiers in Physiology, 2018, 9, 1773.	2.8	48
11	Early Diastolic Ca2+ Sparks Alter Repolarization Rate of Rabbit Cardiomyocytes. Biophysical Journal, 2018, 114, 288a.	0.5	0
12	Spontaneous Ca2+ transients in rat pulmonary vein cardiomyocytes are increased in frequency and become more synchronous following electrical stimulation. Cell Calcium, 2018, 76, 36-47.	2.4	7
13	Ryanodine receptor dispersion disrupts Ca2+ release in failing cardiac myocytes. ELife, 2018, 7, .	6.0	84
14	Basic Methods for Monitoring Intracellular Ca ²⁺ in Cardiac Myocytes Using Fluo-3. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076950.	0.3	12
15	Characterizing the Trigger for Sarcoplasmic Reticulum Ca2+Release in Cardiac Myocytes. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076968.	0.3	3
16	Measuring Sarcoplasmic Reticulum Ca ²⁺ Content, Fractional Release, and Ca ²⁺ Buffering in Cardiac Myocytes. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076976.	0.3	4
17	Assessing Ca ²⁺ -Removal Pathways in Cardiac Myocytes. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076992.	0.3	3
18	Ryanodine receptor cluster fragmentation and redistribution in persistent atrial fibrillation enhance calcium release. Cardiovascular Research, 2015, 108, 387-398.	3.8	93

NIALL MACQUAIDE

#	Article	IF	CITATIONS
19	The Direct Actions of Flecainide on the Human Cardiac Ryanodine Receptor. Circulation Research, 2015, 116, 1284-1286.	4.5	21
20	A Systematic Approach for Assessing Ca ²⁺ Handling in Cardiac Myocytes. Cold Spring Harbor Protocols, 2015, 2015, pdb.top066142.	0.3	1
21	Measuring Ca ²⁺ Sparks in Cardiac Myocytes. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076984.	0.3	1
22	Structural and Functional Alteration of RyR Clusters After Remodeling in Persistent Atrial Fibrillation. Biophysical Journal, 2014, 106, 431a.	0.5	1
23	Altered CamkII and Ros Microdomains Favor Sparks in Orphaned RyR After Myocardial Infarction. Biophysical Journal, 2014, 106, 322a.	0.5	2
24	FKBP12.6 overexpression does not protect against remodelling after myocardial infarction. Experimental Physiology, 2013, 98, 134-148.	2.0	6
25	Intracellular Dyssynchrony of Diastolic Cytosolic [Ca ²⁺] Decay in Ventricular Cardiomyocytes in Cardiac Remodeling and Human Heart Failure. Circulation Research, 2013, 113, 527-538.	4.5	50
26	T-Tubule Remodelling and Ryanodine Receptor Organization Modulate Sodium-Calcium Exchange. Advances in Experimental Medicine and Biology, 2013, 961, 375-383.	1.6	12
27	Selective Modulation of Coupled Ryanodine Receptors During Microdomain Activation of Calcium/Calmodulin-Dependent Kinase II in the Dyadic Cleft. Circulation Research, 2013, 113, 1242-1252.	4.5	37
28	Intracellular Dyssynchrony in Calcium Removal in Ventricular Cardiac Myocytes. Biophysical Journal, 2012, 102, 552a.	0.5	0
29	3-D Localization of Subcellular Ca2+ Release Reveals a Cytoskeletal Dependence of RyR Activation. Biophysical Journal, 2012, 102, 316a.	0.5	Ο
30	Variable RyR Cluster Morphology in Sheep Atrial Myocytes: Super Resolution Measurement and Ca2+ Release Simulation. Biophysical Journal, 2012, 102, 309a.	0.5	0
31	Exercise training corrects control of spontaneous calcium waves in hearts from myocardial infarction heart failure rats. Journal of Cellular Physiology, 2012, 227, 20-26.	4.1	21
32	Dyssynchrony of Ca2+ release from the sarcoplasmic reticulum as subcellular mechanism of cardiac contractile dysfunction. Journal of Molecular and Cellular Cardiology, 2011, 50, 390-400.	1.9	65
33	Subcellular Heterogeneity of Ryanodine Receptor Properties in Ventricular Myocytes with Low T-Tubule Density. PLoS ONE, 2011, 6, e25100.	2.5	53
34	The effect of exercise training on transverse tubules in normal, remodeled, and reverse remodeled hearts. Journal of Cellular Physiology, 2011, 226, 2235-2243.	4.1	44
35	Blink and You'll See It. Circulation Research, 2011, 108, 154-156.	4.5	1
36	Differential sensitivity of Ca ²⁺ wave and Ca ²⁺ spark events to ruthenium red in isolated permeabilised rabbit cardiomyocytes. Journal of Physiology, 2010, 588, 4731-4742.	2.9	13

NIALL MACQUAIDE

#	Article	IF	CITATIONS
37	Activation of the cardiac Na+–Ca2+ exchanger by sorcin via the interaction of the respective Ca2+-binding domains. Journal of Molecular and Cellular Cardiology, 2010, 49, 132-141.	1.9	45
38	Assessment of Sarcoplasmic Reticulum Ca2+ Depletion During Spontaneous Ca2+ Waves in Isolated Permeabilized Rabbit Ventricular Cardiomyocytes. Biophysical Journal, 2009, 96, 2744-2754.	0.5	15
39	Exercise Training Reduces Spontaneous Ca2+ Waves In Cardiomyocytes From Post-myocardial Infarction Heart Failure Rats. Biophysical Journal, 2009, 96, 274a-275a.	0.5	0
40	UV Ratiometric Imaging Of Isolated Ventricular Cardiomyocytes Using An LED Based Illuminator. Biophysical Journal, 2009, 96, 638a.	0.5	0
41	Upregulation Of Cam Kinase IIδ Modulates Spontaneous Ca2+ Wave Properties In A Rabbit Model Of Heart Failure. Biophysical Journal, 2009, 96, 275a.	0.5	0
42	Exercise Training Corrects Control Of Diastolic Calcium In Hearts From Myocardial Infarction Heart Failure Rats. Medicine and Science in Sports and Exercise, 2009, 41, 174.	0.4	3
43	Unilateral arm strength training improves contralateral peak force and rate of force development. European Journal of Applied Physiology, 2008, 103, 553-559.	2.5	51
44	Cytoplasmic versus Intra-SR: the Battle of the Ca2+ Diffusion Coefficients in Cardiac Muscle. Biophysical Journal, 2008, 95, 1005-1006.	0.5	7
45	Measurement and Modeling of Ca2+ Waves in Isolated Rabbit Ventricular Cardiomyocytes. Biophysical Journal, 2007, 93, 2581-2595.	0.5	23
46	S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes. Cell Calcium, 2007, 41, 135-143.	2.4	59
47	Physiologic, but not Pathologic Hypertrophy of the Cardiomyocyte sustains Transverse Tubule Density. Medicine and Science in Sports and Exercise, 2007, 39, S97.	0.4	0
48	Swallowing a spider to catch a fly: Ca-calmodulin dynamics in adult cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2006, 41, 416-417.	1.9	1
49	DYNAMICS OF CARDIAC INTRACELLULAR Ca2+ HANDLING \hat{a} €" FROM EXPERIMENTS TO VIRTUAL CELLS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 3535-3560.	1.7	1