Nunzio Bottini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1928845/publications.pdf

Version: 2024-02-01

47 papers 6,092 citations

201385 27 h-index 233125 45 g-index

47 all docs

47 docs citations

47 times ranked

7560 citing authors

#	Article	IF	CITATIONS
1	Protein Tyrosine Phosphatases in the Human Genome. Cell, 2004, 117, 699-711.	13.5	1,697
2	A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nature Genetics, 2004, 36, 337-338.	9.4	1,226
3	Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nature Reviews Rheumatology, 2013, 9, 24-33.	3.5	715
4	Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nature Genetics, 2005, 37, 1317-1319.	9.4	643
5	PTPN22: the archetypal non-HLA autoimmunity gene. Nature Reviews Rheumatology, 2014, 10, 602-611.	3.5	198
6	The Autoimmunity-Associated Gene PTPN22 Potentiates Toll-like Receptor-Driven, Type 1 Interferon-Dependent Immunity. Immunity, 2013, 39, 111-122.	6.6	172
7	Tyrosine Phosphatase PTPN22: Multifunctional Regulator of Immune Signaling, Development, and Disease. Annual Review of Immunology, 2014, 32, 83-119.	9.5	167
8	Targeting Tyrosine Phosphatases: Time to End the Stigma. Trends in Pharmacological Sciences, 2017, 38, 524-540.	4.0	139
9	A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Human Molecular Genetics, 2008, 18, 569-579.	1.4	106
10	Autoimmune-associated PTPN22 R620W Variation Reduces Phosphorylation of Lymphoid Phosphatase on an Inhibitory Tyrosine Residue. Journal of Biological Chemistry, 2010, 285, 26506-26518.	1.6	80
11	Epigenetics in Rheumatoid Arthritis: A Primer for Rheumatologists. Current Rheumatology Reports, 2013, 15, 372.	2.1	63
12	Epigenetic alterations in rheumatoid arthritis fibroblast-like synoviocytes. Epigenomics, 2017, 9, 479-492.	1.0	59
13	Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase. Nature Chemical Biology, 2017, 13, 624-632.	3.9	56
14	Altered thymic differentiation and modulation of arthritis by invariant NKT cells expressing mutant ZAP70. Nature Communications, 2018, 9, 2627.	5.8	55
15	Reduced expression of phosphatase PTPN2 promotes pathogenic conversion of Tregs in autoimmunity. Journal of Clinical Investigation, 2019, 129, 1193-1210.	3.9	51
16	Nanodrugs to target articular cartilage: An emerging platform for osteoarthritis therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 255-268.	1.7	50
17	PTP4A1 promotes $TGF\hat{l}^2$ signaling and fibrosis in systemic sclerosis. Nature Communications, 2017, 8, 1060.	5.8	46
18	Targeting phosphatase-dependent proteoglycan switch for rheumatoid arthritis therapy. Science Translational Medicine, 2015, 7, 288ra76.	5.8	44

#	Article	IF	CITATIONS
19	CD45-mediated control of TCR tuning in na \tilde{A} -ve and memory CD8+ T cells. Nature Communications, 2016, 7, 13373.	5.8	44
20	Protein Tyrosine Phosphatase Expression Profile of Rheumatoid Arthritis Fibroblastâ€ike Synoviocytes: A Novel Role of SH2 Domain–Containing Phosphatase 2 as a Modulator of Invasion and Survival. Arthritis and Rheumatism, 2013, 65, 1171-1180.	6.7	43
21	Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Science Advances, 2020, 6, eaba4353.	4.7	43
22	The Contribution of <i>PTPN22</i> to Rheumatic Disease. Arthritis and Rheumatology, 2019, 71, 486-495.	2.9	42
23	$TGF\hat{I}^2$ responsive tyrosine phosphatase promotes rheumatoid synovial fibroblast invasiveness. Annals of the Rheumatic Diseases, 2016, 75, 295-302.	0.5	35
24	Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation. JCl Insight, 2016, 1 , .	2.3	34
25	Association of the acid phosphatase (ACP1) gene with triglyceride levels in obese women. Molecular Genetics and Metabolism, 2002, 77, 226-229.	0.5	33
26	PTPN14 phosphatase and YAP promote TGF \hat{l}^2 signalling in rheumatoid synoviocytes. Annals of the Rheumatic Diseases, 2019, 78, 600-609.	0.5	33
27	T-helper signals restore B-cell receptor signaling in autoreactive anergic B cells by upregulating CD45 phosphatase activity. Journal of Allergy and Clinical Immunology, 2016, 138, 839-851.e8.	1.5	30
28	Receptor Protein Tyrosine Phosphatase α–Mediated Enhancement of Rheumatoid Synovial Fibroblast Signaling and Promotion of Arthritis in Mice. Arthritis and Rheumatology, 2016, 68, 359-369.	2.9	24
29	Autoimmunity-Associated LYP-W620 Does Not Impair Thymic Negative Selection of Autoreactive T Cells. PLoS ONE, 2014, 9, e86677.	1.1	20
30	RPTPÎ \pm phosphatase activity is allosterically regulated by the membrane-distal catalytic domain. Journal of Biological Chemistry, 2020, 295, 4923-4936.	1.6	18
31	Nitric Oxide Dependent Degradation of Polyethylene Glycolâ€Modified Singleâ€Walled Carbon Nanotubes: Implications for Intraâ€Articular Delivery. Advanced Healthcare Materials, 2018, 7, e1700916.	3.9	14
32	PTPN2 links colonic and joint inflammation in experimental autoimmune arthritis. JCI Insight, 2020, 5, .	2.3	14
33	Deletion of low molecular weight protein tyrosine phosphatase (⟨i⟩Acp1⟨/i⟩) protects against stressâ€induced cardiomyopathy. Journal of Pathology, 2015, 237, 482-494.	2.1	12
34	PTPN22 phosphorylation acts as a molecular rheostat for the inhibition of TCR signaling. Science Signaling, 2020, 13, .	1.6	11
35	Discovery of Orally Bioavailable Purine-Based Inhibitors of the Low-Molecular-Weight Protein Tyrosine Phosphatase. Journal of Medicinal Chemistry, 2021, 64, 5645-5653.	2.9	11
36	pCAP-based peptide substrates: The new tool in the box of tyrosine phosphatase assays. Methods, 2014, 65, 165-174.	1.9	10

#	Article	IF	CITATIONS
37	Ptpn22 and Cd2 Variations Are Associated with Altered Protein Expression and Susceptibility to Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2015, 195, 4841-4852.	0.4	10
38	Integration of T helper and BCR signals governs enhanced plasma cell differentiation of memory B cells by regulation of CD45 phosphatase activity. Cell Reports, 2021, 36, 109525.	2.9	7
39	The low molecular weight protein tyrosine phosphatase promotes adipogenesis and subcutaneous adipocyte hypertrophy. Journal of Cellular Physiology, 2021, 236, 6630-6642.	2.0	6
40	Phosphatase Inhibitors Function as Novel, Broad Spectrum Botulinum Neurotoxin Antagonists in Mouse and Human Embryonic Stem Cell-Derived Motor Neuron-Based Assays. PLoS ONE, 2015, 10, e0129264.	1.1	6
41	Lipidâ€based regulators of immunity. Bioengineering and Translational Medicine, 0, , .	3.9	6
42	"PEST control― regulation of molecular barcodes by tyrosine phosphatases. Cell Research, 2014, 24, 1027-1028.	5.7	5
43	Emerging proteoglycans and proteoglycan-targeted therapies in rheumatoid arthritis. American Journal of Physiology - Cell Physiology, 2022, 322, C1061-C1067.	2.1	5
44	Protein Tyrosine Phosphatases in Systemic Sclerosis: Potential Pathogenic Players and Therapeutic Targets. Current Rheumatology Reports, 2017, 19, 28.	2.1	3
45	Oxidative stress promotes fibrosis in systemic sclerosis through stabilization of a kinase-phosphatase complex. JCI Insight, 2022, 7, .	2.3	3
46	Ten years after: rheumatology research from bench to bedside. Nature Reviews Rheumatology, 2015, 11, 623-624.	3.5	2
47	Tâ€helper cell regulation of <scp>CD45</scp> phosphatase activity by galectinâ€1 and <scp>CD43</scp> governs chronic lymphocytic leukaemia proliferation. British Journal of Haematology, 0, , .	1.2	1