List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1928499/publications.pdf Version: 2024-02-01

		29994	20900
319	15,431	54	115
papers	citations	h-index	g-index
320	320	320	14546
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics, 2015, 11, 582-587.	6.5	1,651
2	Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells. Nano Letters, 2014, 14, 5561-5568.	4.5	1,073
3	Low-Temperature Processed Electron Collection Layers of Graphene/TiO ₂ Nanocomposites in Thin Film Perovskite Solar Cells. Nano Letters, 2014, 14, 724-730.	4.5	999
4	Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotechnology, 2007, 2, 640-646.	15.6	988
5	Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy and Environmental Science, 2016, 9, 962-970.	15.6	603
6	Efficient perovskite solar cells by metal ion doping. Energy and Environmental Science, 2016, 9, 2892-2901.	15.6	372
7	A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy and Environmental Science, 2017, 10, 145-152.	15.6	319
8	Polymer Structure and Solvent Effects on the Selective Dispersion of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 3543-3553.	6.6	287
9	Structured Organic–Inorganic Perovskite toward a Distributed Feedback Laser. Advanced Materials, 2016, 28, 923-929.	11.1	257
10	Exchange enhancement of the spin splitting in a GaAs-GaxAl1â^'xAs heterojunction. Physical Review B, 1988, 37, 1294-1302.	1.1	252
11	Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nature Materials, 2005, 4, 481-485.	13.3	245
12	Magneto-optics in GaAs-Ga1â^'xAlxAs quantum wells. Physical Review B, 1986, 34, 4002-4009.	1.1	222
13	Observation of magnetic excitons and spin waves in activation studies of a two-dimensional electron gas. Physical Review B, 1990, 41, 1129-1134.	1.1	183
14	Measurements of the effective mass and scattering times of composite fermions from magnetotransport analysis. Physical Review Letters, 1994, 72, 1906-1909.	2.9	169
15	Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes. Journal of Physical Chemistry Letters, 2014, 5, 4207-4212.	2.1	156
16	UV–vis absorption spectroscopy of carbon nanotubes: Relationship between the π-electron plasmon and nanotube diameter. Chemical Physics Letters, 2010, 493, 19-23.	1.2	155
17	Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite. Journal of Physical Chemistry Letters, 2017, 8, 1851-1855.	2.1	152
18	Structural and Optical Properties of Cs ₂ AgBiBr ₆ Double Perovskite. ACS Energy Letters, 2019, 4, 299-305.	8.8	146

#	Article	IF	CITATIONS
19	Modification of the Electron-Phonon Interactions in GaAs-GaAlAs Heterojunctions. Physical Review Letters, 1987, 58, 77-80.	2.9	144
20	An experimental determination of the effective masses for GaxIn1â^'xAsyP1â^'yalloys grown on InP. Applied Physics Letters, 1979, 34, 492-494.	1.5	133
21	Research Update: Strategies for improving the stability of perovskite solar cells. APL Materials, 2016, 4,	2.2	126
22	Extreme sensitivity of graphene photoconductivity to environmental gases. Nature Communications, 2012, 3, 1228.	5.8	120
23	Cyclotron resonance studies on bulk and two-dimensional conduction electrons in InSe. Solid State Communications, 1982, 44, 379-383.	0.9	111
24	Carbon Nanotubes in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601839.	10.2	107
25	Investigating the Role of 4â€ <i>Tert</i> Butylpyridine in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601079.	10.2	106
26	Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes. Chemical Physics Letters, 2004, 386, 239-243.	1.2	95
27	A study of the conduction band non-parabolicity, anisotropy and spin splitting in GaAs and InP. Semiconductor Science and Technology, 1987, 2, 568-577.	1.0	92
28	The magnetophonon effect. Progress in Quantum Electronics, 1985, 10, 1-75.	3.5	90
29	Noncovalent Binding of Carbon Nanotubes by Porphyrin Oligomers. Angewandte Chemie - International Edition, 2011, 50, 2313-2316.	7.2	90
30	Frequency-Shifted Polaron Coupling inGa0.47In0.53As Heterojunctions. Physical Review Letters, 1985, 55, 883-886.	2.9	89
31	Intersubband resonant scattering in GaAs-Ga1â^'xAlxAs heterojunctions. Physical Review B, 1992, 46, 12439-12447.	1.1	87
32	Cyclotron resonance and the magnetophonon effect in GaxIn1â^'xAsyP1â^'y. Applied Physics Letters, 1980, 37, 178-180.	1.5	84
33	Growth of GaSb by MOVPE. Semiconductor Science and Technology, 1988, 3, 315-320.	1.0	81
34	Ultrafast Charge Separation at a Polymerâ^'Single-Walled Carbon Nanotube Molecular Junction. Nano Letters, 2011, 11, 66-72.	4.5	81
35	The k.p interaction in InP and GaAs from the band-gap dependence of the effective mass. Journal of Physics C: Solid State Physics, 1984, 17, 4429-4442.	1.5	78
36	Observation of a Type II Heterojunction in a Highly Ordered Polymerâ^'Carbon Nanotube Nanohybrid Structure. Nano Letters, 2009, 9, 3871-3876.	4.5	77

#	Article	IF	CITATIONS
37	Two-dimensional spin confinement in strained-layer quantum wells. Physical Review B, 1990, 42, 9237-9240.	1.1	74
38	A study of the deep acceptor levels of iron in InP. Journal of Physics C: Solid State Physics, 1979, 12, 5145-5155.	1.5	73
39	Dopant-Free Planar n–i–p Perovskite Solar Cells with Steady-State Efficiencies Exceeding 18%. ACS Energy Letters, 2017, 2, 622-628.	8.8	73
40	Cyclotron-resonance study of nonparabolicity and screening in GaAs-Ga1â^'xAlxAs heterojunctions. Physical Review B, 1987, 36, 4789-4795.	1.1	71
41	Photoluminescence of GaSb grown by metal-organic vapour phase epitaxy. Semiconductor Science and Technology, 1991, 6, 45-53.	1.0	70
42	Quantum transport in GalnAs-AllnAs heterojunctions, and the influence of intersubband scattering. Solid State Communications, 1982, 43, 907-911.	0.9	66
43	Odd and even fractionally quantized states in GaAs-GaAlAs heterojunctions. Surface Science, 1986, 170, 141-147.	0.8	66
44	Carrier-concentation-dependent electron–LO-phonon coupling observed in GaAs-(Ga,Al)As heterojunctions by resonant-polaron cyclotron resonance. Physical Review B, 1988, 38, 13133-13142.	1.1	65
45	The Impact of Phase Retention on the Structural and Optoelectronic Properties of Metal Halide Perovskites. Advanced Materials, 2016, 28, 10757-10763.	11.1	65
46	An experimental determination of enhanced electron g-factors in GalnAs-A1InAs heterojunctions. Solid State Communications, 1983, 45, 911-914.	0.9	63
47	Controlled orientation of ellipsoidal fullerene C70 in carbon nanotubes. Applied Physics Letters, 2004, 84, 792-794.	1.5	63
48	First observation of the quantum Hall effect in a Ga0.47In0.53Asâ€InP heterostructure with three electric subbands. Applied Physics Letters, 1986, 48, 712-714.	1.5	59
49	Γ-Xmixing in the miniband structure of a GaAs/AlAs superlattice. Physical Review Letters, 1989, 63, 2284-2287.	2.9	59
50	Chirality Assignment of Single-Walled Carbon Nanotubes with Strain. Physical Review Letters, 2004, 93, 156104.	2.9	59
51	Optically detected cyclotron resonance of GaAs quantum wells: Effective-mass measurements and offset effects. Physical Review B, 1992, 46, 13394-13399.	1.1	58
52	Direct spectroscopic evidence of energy transfer from photo-excited semiconducting polymers to single-walled carbon nanotubes. Nanotechnology, 2008, 19, 095603.	1.3	56
53	Evidence for Anderson localisation in Landau level tails from the analysis of two-dimensional Shubnikov—de Haas conductivity minima. Solid State Communications, 1977, 23, 341-345.	0.9	55
54	Fractional quantum Hall effect in tilted magnetic fields. Physical Review B, 1987, 36, 4528-4530.	1.1	55

#	Article	IF	CITATIONS
55	Highly Crystalline Methylammonium Lead Tribromide Perovskite Films for Efficient Photovoltaic Devices. ACS Energy Letters, 2018, 3, 1233-1240.	8.8	54
56	The effects of nitrogen and boron doping on the optical emission and diameters of single-walled carbon nanotubes. Carbon, 2006, 44, 2752-2757.	5.4	53
57	Magnetotransport in a pseudomorphic GaAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure with a Si δ-doping layer. Physical Review B, 1995, 52, 12218-12231.	1.1	52
58	Electronic and Mechanical Modification of Single-Walled Carbon Nanotubes by Binding to Porphyrin Oligomers. ACS Nano, 2011, 5, 2307-2315.	7.3	50
59	GaSb heterostructures grown by MOVPE. Journal of Crystal Growth, 1988, 93, 70-78.	0.7	49
60	Carrier-concentration-dependent polaron cyclotron resonance in GaAs heterostructures. Physical Review B, 1992, 45, 4296-4300.	1.1	49
61	Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. Nanotechnology, 2005, 16, S202-S205.	1.3	49
62	New phases of the 2D electron system in the ultra-quantum limit observed by cyclotron resonances. Physical Review Letters, 1993, 70, 2150-2153.	2.9	48
63	Anomalies in the cyclotron resonance in high-mobility GaAs-Ga1â^'xAlxAs heterojunctions. Physical Review B, 1989, 39, 10955-10962.	1.1	47
64	Observation of optically detected magnetophonon resonance. Physical Review Letters, 1991, 66, 794-797.	2.9	47
65	Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum. Nature Communications, 2015, 6, 7536.	5.8	46
66	Two-dimensional magnetophonon resonance. I. GalnAs-InP superlattices. Journal of Physics C: Solid State Physics, 1983, 16, L573-L578.	1.5	45
67	Effect masses and non-parabolicity in GaxIn1-xAs. Journal of Physics C: Solid State Physics, 1985, 18, 2667-2676.	1.5	45
68	Wavelength-dependent photoconduction effects on the second sub-band occupancy in (Al, Ga)As/GaAs heterojunctions. Semiconductor Science and Technology, 1987, 2, 783-789.	1.0	45
69	Cyclotron phonon emission and electron energy loss rates in GaAs-GaAlAs heterojunctions. Semiconductor Science and Technology, 1989, 4, 879-884.	1.0	45
70	Raman scattering in InP1-xAsxalloys. Journal of Physics C: Solid State Physics, 1980, 13, 899-910.	1.5	44
71	Spatially resolved studies of the phases and morphology of methylammonium and formamidinium lead tri-halide perovskites. Nanoscale, 2017, 9, 3222-3230.	2.8	44
72	Experimental studies of thev=15hierarchy in the fractional quantum Hall effect. Physical Review B, 1988, 38, 2200-2203.	1.1	43

#	Article	IF	CITATIONS
73	Observation of decoupled heavy and light holes in GaAs-Ga1â^'xAlxAs quantum wells by magnetoreflectivity. Physical Review B, 1988, 38, 1323-1329.	1.1	42
74	Cyclotron resonance of electrons in a narrow GaAs/(Ga,Al)As quantum well: Polaron effects and non-parabolicity. Surface Science, 1988, 196, 429-436.	0.8	41
75	Thiophene-based dyes for probing membranes. Organic and Biomolecular Chemistry, 2015, 13, 3792-3802.	1.5	41
76	Giant Fine Structure Splitting of the Bright Exciton in a Bulk MAPbBr ₃ Single Crystal. Nano Letters, 2019, 19, 7054-7061.	4.5	41
77	Two-dimensional magnetophonon resonance. II. GalnAs-AlInAs heterojunctions. Journal of Physics C: Solid State Physics, 1983, 16, L579-L584.	1.5	39
78	Growth of InAs/GaSb strained layer superlattices. I. Journal of Crystal Growth, 1994, 145, 778-785.	0.7	39
79	Effective mass and quantum lifetime in a Si/Si0.87Ge0.13/Si twoâ€dimensional hole gas. Applied Physics Letters, 1994, 64, 357-359.	1.5	37
80	Temperature induced restoration of fluorescence from oxidised single-walled carbon nanotubes in aqueous sodium dodecylsulfate solution. Physical Chemistry Chemical Physics, 2006, 8, 3547.	1.3	37
81	Terahertz Excitonic Response of Isolated Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 18106-18109.	1.5	36
82	Nanoengineering Coaxial Carbon Nanotube–Dual-Polymer Heterostructures. ACS Nano, 2012, 6, 6058-6066.	7.3	36
83	An ultrafast carbon nanotube terahertz polarisation modulator. Journal of Applied Physics, 2014, 115, .	1.1	36
84	Impact of microstructure on the electron–hole interaction in lead halide perovskites. Energy and Environmental Science, 2017, 10, 1358-1366.	15.6	36
85	An investigation of the valley splitting in n-channel silicon ã€^100〉 inversion layers. Solid State Communications, 1980, 34, 51-55.	0.9	35
86	Quantum oscillations at a Ga0.47In0.53Asî—,InP heterojunction interface. Solid State Communications, 1982, 43, 825-828.	0.9	35
87	Influence of acoustic phonons on inter-subband scattering in GaAs-GaAlAs heterojunctions. Semiconductor Science and Technology, 1989, 4, 885-888.	1.0	35
88	GaSb/GaInSb quantum wells grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 1989, 54, 922-924.	1.5	35
89	Title is missing!. Journal of Physics C: Solid State Physics, 1986, 19, 77-92.	1.5	34
90	Novel Carbon Nanotube onjugated Polymer Nanohybrids Produced By Multiple Polymer Processing. Advanced Materials, 2013, 25, 4365-4371.	11.1	34

#	Article	IF	CITATIONS
91	Cyclotron resonance and polaron effects in a two-dimensional electron gas in GalnAs. Surface Science, 1984, 142, 380-387.	0.8	33
92	Phonon drag contribution to thermoelectric power in two-dimensional systems. Journal of Physics C: Solid State Physics, 1985, 18, L695-L698.	1.5	33
93	Subband-Landau level coupling in a two-dimensional electron gas in tilted magnetic fields. Journal of Physics C: Solid State Physics, 1986, 19, L107-L112.	1.5	33
94	Cyclotron resonance and screening effects in GaAs-GaAlAs heterojunctions. Superlattices and Microstructures, 1986, 2, 319-322.	1.4	33
95	Chirality-dependent boron-mediated growth of nitrogen-doped single-walled carbon nanotubes. Physical Review B, 2005, 72, .	1.1	33
96	Two-dimensional magnetophonon resonance in GalnAs-InP and GalnAs-AllnAs heterojunctions and superlattices. Surface Science, 1984, 142, 368-374.	0.8	32
97	Temperature dependence of the cyclotron-resonance linewidth in GaAs-Ga1â~'xAlxAs heterojunctions. Physical Review B, 1989, 39, 13302-13309.	1.1	32
98	Strain reconstruction of the valence band in Ga1 â^' xInxSb/GaSb quantum wells. Surface Science, 1990, 228, 270-274.	0.8	32
99	Evidence for a reduction in the momentum matrix element P2due to alloy disorder in InAp1-xPx. Journal of Physics C: Solid State Physics, 1979, 12, 1641-1651.	1.5	31
100	Solubilization of Carbon Nanotubes with Ethylene-Vinyl Acetate for Solution-Processed Conductive Films and Charge Extraction Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 1185-1191.	4.0	31
101	GaAs/GaSb strained″ayer heterostructures deposited by metalorganic vapor phase epitaxy. Applied Physics Letters, 1989, 54, 1241-1243.	1.5	30
102	On the Electronicg-Faetor in n-Type Silicon Inversion Layers. Physica Status Solidi (B): Basic Research, 1980, 99, 237-242.	0.7	29
103	Competition between LO and TO phonon scattering in GaAs/GaAlAs heterojunctions. Surface Science, 1988, 196, 451-458.	0.8	28
104	Enhanced carrier densities and device performance in piezoelectric pseudomorphic highâ€electron mobility transistor structures. Applied Physics Letters, 1992, 61, 1072-1074.	1.5	27
105	Growth of strained layer superlattices. II. Journal of Crystal Growth, 1995, 146, 495-502.	0.7	27
106	Magnetic separation of Fe catalyst from single-walled carbon nanotubes in an aqueous surfactant solution. Carbon, 2005, 43, 1151-1155.	5.4	27
107	Energy relaxation mechanisms in n-type GaAs from magnetophonon spectroscopy. Journal of Physics C: Solid State Physics, 1976, 9, 1253-1262.	1.5	26
108	The electric sub-band structure of electron accumulation layers in InSe from Shubnikov-de Haas oscillations and inter-sub-band resonance. Journal of Physics C: Solid State Physics, 1983, 16, 4285-4295.	1.5	26

#	Article	IF	CITATIONS
109	Cyclotron resonance in InAs/GaSb heterostructures. Semiconductor Science and Technology, 1992, 7, 985-993.	1.0	26
110	Interface studies of InAs/GaSb superlattices by Raman scattering. Surface Science, 1992, 267, 176-180.	0.8	26
111	Influence of light on the confinement potential of GaAs/AlxGa1â^'xAs heterojunctions. Physical Review B, 1995, 52, 2688-2696.	1.1	26
112	Metal-Insulator Oscillations in a Two-Dimensional Electron-Hole System. Physical Review Letters, 2000, 85, 2364-2367.	2.9	26
113	Inter-subband scattering rates in GaAs-GaAlAs heterojunctions. Semiconductor Science and Technology, 1990, 5, 1081-1087.	1.0	25
114	Introduction. Carbon-based electronics: fundamentals and device applications. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 189-193.	1.6	25
115	Resonant 2D magnetopolarons in accumulation layers on n-Hg0.8Cd0.2Te. Solid State Communications, 1986, 58, 833-838.	0.9	24
116	An optically detected cyclotron resonance study of bulk GaAs. Semiconductor Science and Technology, 1994, 9, 198-206.	1.0	24
117	MOVPE grown self-assembled and self-ordered InSb quantum dots in a GaSb matrix assessed by AFM, CTEM, HRTEM and PL. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 80, 112-115.	1.7	24
118	Production of Highâ€Purity Singleâ€Chirality Carbon Nanotube Hybrids by Selective Polymer Exchange. Small, 2013, 9, 2245-2249.	5.2	24
119	Evidence for a contribution to the extrinsic photoconductive signal by hopping through excited states of the donors in silicon and CdTe. Solid State Communications, 1977, 24, 55-60.	0.9	23
120	Two-dimensional behaviour due to electrons bound at defects in InSe. Surface Science, 1982, 113, 339-346.	0.8	23
121	Pressure dependence of light-hole transport in strained InGaAs/GaAs. Surface Science, 1990, 229, 122-125.	0.8	23
122	High-pressure investigation of GaSb andGa1â^'xInxSb/GaSb quantum wells. Physical Review B, 1991, 43, 4994-5000.	1.1	23
123	Collapse of High Field Magnetophonon Resonance in GaAs-GaAlAs Heterojunctions. Physical Review Letters, 1994, 73, 589-592.	2.9	23
124	Observation of magnetic-field-induced semimetal-semiconductor transitions in crossed-gap superlattices by cyclotron resonance. Physical Review B, 1994, 49, 10474-10483.	1.1	23
125	The analysis of thermal activation of two-dimensional Shubnikov-De Haas conductivity minima and maxima. Surface Science, 1978, 73, 106-115.	0.8	22
126	The magnetophonon effect in InAs1-xPx. Journal of Physics C: Solid State Physics, 1979, 12, 1653-1664.	1.5	22

#	Article	IF	CITATIONS
127	Cyclotron resonance linewidth in a two-dimensional electron gas. Surface Science, 1982, 113, 326-332.	0.8	22
128	Oscillatory behavior in the photoluminescence excitation and photoconductivity spectra of GaAs-AlAs superlattices. Physical Review B, 1989, 39, 1219-1223.	1.1	22
129	Devices and desires in the 2-4 mu m region based on antimony-containing III-V heterostructures grown by MOVPE. Semiconductor Science and Technology, 1993, 8, S380-S385.	1.0	22
130	[001]- and piezoelectric-[111]-oriented InAs/GaSb structures under hydrostatic pressure. Physical Review B, 1994, 49, 16614-16621.	1.1	22
131	Limits on band discontinuities in GaAs-GaAlAs heterostructures deduced from optical photoresponse. Journal of Physics C: Solid State Physics, 1985, 18, L891-L896.	1.5	21
132	GaSb/InAs heterojunctions grown by MOVPE: Effect of gas switching sequences on interface quality. Journal of Crystal Growth, 1991, 110, 677-682.	0.7	21
133	High-field magnetoresistance in GaAs/Ga0.7Al0.3As heterojunctions arising from elastic and inelastic scattering. Physical Review B, 1993, 48, 5457-5468.	1.1	21
134	Surface-Effect-Induced Optical Bandgap Shrinkage in GaN Nanotubes. Nano Letters, 2015, 15, 4472-4476.	4.5	21
135	High field magneto-transport measurements in GaAs-GaAlAs multilayers. Surface Science, 1982, 113, 290-294.	0.8	20
136	Frequency shifted polaron coupling in GalnAs heterostructures. Surface Science, 1986, 170, 542-548.	0.8	20
137	Quantum transport in accumulation layers on Cd0.2Hg0.8Te. Journal of Physics C: Solid State Physics, 1986, 19, 35-42.	1.5	20
138	Persistent photoconductivity in Ga0.49In0.51P/GaAs heterojunctions. Journal of Applied Physics, 1989, 65, 2756-2760.	1.1	20
139	Cyclotron resonance of both magnetopolaron branches for polar and neutral optical phonon coupling in the layer compound InSe. Physical Review B, 1992, 45, 12144-12147.	1.1	20
140	High magnetic field studies of the crossed-gap superlattice system InAs/GaSb. Physica B: Condensed Matter, 1993, 184, 268-276.	1.3	20
141	Cyclotron resonance of high-mobility GaAs/AlGaAs (311) 2DHGs. Semiconductor Science and Technology, 1993, 8, 1465-1469.	1.0	20
142	Searches for skyrmions in the limit of zero -factor. Semiconductor Science and Technology, 1998, 13, 671-679.	1.0	20
143	Shallow donor spectroscopy and polaron coupling in Ga0.47In0.53As. Journal of Physics C: Solid State Physics, 1985, 18, L427-L431.	1.5	19
144	Hot carrier relaxation of Dirac fermions in bilayer epitaxial graphene. Journal of Physics Condensed Matter, 2015, 27, 164202.	0.7	19

#	Article	IF	CITATIONS
145	GaSb/InAs heterojunctions grown by MOVPE. Journal of Crystal Growth, 1991, 107, 422-427.	0.7	18
146	Magnetoconductivity in a mesoscopic antidot array. Physical Review B, 1993, 47, 7348-7353.	1.1	18
147	Optical and magnetotransport properties of semimetallic InAs/(In,Ga)Sb superlattices. Physica B: Condensed Matter, 1994, 201, 271-279.	1.3	18
148	Orientation and pressure dependence of the band overlap in InAs/GaSb structures. Semiconductor Science and Technology, 1994, 9, 118-122.	1.0	18
149	Improved photoluminescence from electrochemically passivated GaSb. Semiconductor Science and Technology, 1997, 12, 413-418.	1.0	18
150	Infrared single wavelength gas composition monitoring for metalorganic vapour-phase epitaxy. Journal of Crystal Growth, 2000, 221, 166-171.	0.7	18
151	The effects of high uniaxial stress on the far infra-red impurity spectra of high purity n- and p-type silicon. Solid State Communications, 1978, 26, 11-15.	0.9	17
152	Studies deep chromium acceptor levels in InP. Journal of Physics C: Solid State Physics, 1981, 14, 2135-2146.	1.5	17
153	Magneto-optical studies of GainAsî—,InP quantum wells. Superlattices and Microstructures, 1987, 3, 471-475.	1.4	17
154	Evolution of the electronic states of coupled (In,Ga)As-GaAs quantum wells into superlattice minibands. Physical Review B, 1990, 42, 3024-3029.	1.1	17
155	Magnetotransport of piezoelectric [111] oriented strained quantum wells. Applied Physics Letters, 1991, 59, 659-661.	1.5	17
156	Electroluminescence out to 2.1 mu m observed in GaSb/InxGa1-xSb quantum wells grown by MOVPE. Semiconductor Science and Technology, 1994, 9, 87-90.	1.0	17
157	Miniband structure inInxGa1â^'xAs-GaAs strained-layer superlattices. Physical Review B, 1991, 43, 2246-2254.	1.1	16
158	Internal self-ordering in In(Sb,As), (In,Ga)Sb, and (Cd,Zn,Mn)Se nano-agglomerates/quantum dots. Applied Physics Letters, 2001, 79, 946-948.	1.5	16
159	High magnetic field studies of the twoâ€dimensional electron gas in GalnAsâ€InP superlattices. Applied Physics Letters, 1983, 43, 293-295.	1.5	15
160	Structural and electronic properties of PbTe/Pb1â^'xSnxTe superlattices. Surface Science, 1984, 142, 571-578.	0.8	15
161	Measurements of hot electron magnetophonon resonance in GaAs/GaAlAs heterostructures. Solid-State Electronics, 1988, 31, 781-784.	0.8	15
162	Piezoelectric control of doping and band structure in the crossed gap system GaSb/InAs. Surface Science, 1992, 263, 575-579.	0.8	15

#	Article	IF	CITATIONS
163	Piezoelectric effects in superlattices. Semiconductor Science and Technology, 1993, 8, S367-S372.	1.0	15
164	Temperature dependence of the band overlap in InAs/GaSb structures. Physical Review B, 1995, 51, 1729-1734.	1.1	15
165	Bandgap-selective chemical doping of semiconducting single-walled carbon nanotubes. Nanotechnology, 2004, 15, 1844-1847.	1.3	15
166	Hyperspectral Imaging of Exciton Photoluminescence in Individual Carbon Nanotubes Controlled by High Magnetic Fields. Nano Letters, 2014, 14, 5194-5200.	4.5	15
167	Thermoelectric power of GaAs-GaAlAs heterostructures in high magnetic fields. Solid State Communications, 1986, 57, 381-384.	0.9	14
168	A study of parallel-field magnetoresistance of accumulation layers at anodic oxide films on n-(Hg,) Tj ETQq0 0 0	rgBT /Ove 1.0	rlock 10 Tf 50 14
169	The pressure dependence of the effective mass in a GaAs/AlGaAs heterojunction. Semiconductor Science and Technology, 1992, 7, 787-792.	1.0	14
170	A magneto-optical study of coupled quantum wells in strained GaInSb/GaSb. Physica B: Condensed Matter, 1993, 184, 106-110.	1.3	14
171	"Intrinsic―quantum Hall effect in InAs/Ga1â^xInxSb crossed gap heterostructures in high magnetic fields. Surface Science, 1994, 305, 156-160.	0.8	14
172	A modified phenomenological description of the exchange interactions in dilute magnetic semiconductors. Semiconductor Science and Technology, 1995, 10, 791-796.	1.0	14
173	Cyclotron resonance of electrons and holes in graphene monolayers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 237-243.	1.6	14
174	Electron concentration dependent fractional quantisation in a two dimensional system. Solid State Communications, 1985, 56, 173-176.	0.9	13
175	Interface and layer thickness dependence of the effective mass in superlattices studied by high field cyclotron resonance. Solid-State Electronics, 1996, 40, 181-184.	0.8	13
176	MOVPE grown self-assembled Sb-based quantum dots assessed by means of AFM and TEM. IEE Proceedings: Optoelectronics, 2000, 147, 209-215.	0.8	13
177	Properties of narrow gap quantum dots and wells in the InAs/InSb/GaSb systems. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 20, 204-210.	1.3	13
178	Chemical Interaction at the MoO ₃ /CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl <i>_x</i> Interface. ACS Applied Materials & Interfaces, 2021, 13, 17085-17092.	4.0	13
179	The cyclotron resonance linewidth in two-dimensional electron accumulation layers in InSe. Journal of Physics C: Solid State Physics, 1983, 16, 2439-2448.	1.5	12
180	The influence of alloy disorder on the k.p interaction in (GaIn)(AsP)/InP. Journal of Physics C: Solid State Physics, 1985, 18, L443-L448.	1.5	12

#	Article	IF	CITATIONS
181	Valence band spin splitting in strained In0.18Ga0.82As/GaAs quantum wells. Semiconductor Science and Technology, 1991, 6, 359-364.	1.0	12
182	Intraband and interband magneto-optics ofp-typeIn0.18Ga0.82As/GaAs quantum wells. Physical Review B, 1991, 43, 14124-14133.	1.1	12
183	Magneto-optical studies of screened excitons in GaAs/AlxGa1â^'xAs modulation-doped quantum wells. Physical Review B, 1992, 46, 4047-4052.	1.1	12
184	Magneto-optical studies of the type-I/type-II crossover and band offset in ZnTe/Zn1â^'xMnxTe superlattices in magnetic fields up to 45 T. Physical Review B, 1995, 52, 5269-5274.	1.1	12
185	Measurements of thermoelectric power in two-dimensional systems. Surface Science, 1986, 170, 298-303.	0.8	11
186	High magnetic field characterisation of (Hg, Cd)Te surface layers. Journal of Crystal Growth, 1988, 86, 656-666.	0.7	11
187	Two-dimensional magnetopolaron coupling to both homopolar and longitudinal optic phonons in the layer compound InSe. Journal of Physics Condensed Matter, 1989, 1, 7493-7498.	0.7	11
188	The design of quantum-confined Stark effect modulators for integration with 1.5 mu m lasers. Semiconductor Science and Technology, 1993, 8, 1173-1178.	1.0	11
189	Spin Split Cyclotron Resonance in a 2-D Electron System at Very High Magnetic Fields. Journal of the Physical Society of Japan, 1993, 62, 1267-1271.	0.7	11
190	Cyclotron resonance to 100 mK of a GaAs heterojunction in the ultra-quantum limit. Surface Science, 1994, 305, 33-41.	0.8	11
191	Cyclotron-resonance measurements onp-type strained-layerSi1â^'xGex/Si heterostructures. Physical Review B, 1995, 51, 13499-13502.	1.1	11
192	Excitons with large binding energies in MgS/ZnSe/MgS and ZnMgS/ZnS/ZnMgS quantum wells. Journal of Physics Condensed Matter, 2001, 13, 2317-2329.	0.7	11
193	High Magnetic Field Phenomena in Carbon Nanotubes. Topics in Applied Physics, 2007, , 393-422.	0.4	11
194	Two-Dimensional Excitonic Photoluminescence in Graphene on a Cu Surface. ACS Nano, 2017, 11, 3207-3212.	7.3	11
195	An observation by photoconductivity of strain splitting of shallow bulk donors located near to the surface in silicon mos devices. Solid State Communications, 1976, 20, 77-80.	0.9	10
196	A study of the energy loss mechanisms for hot electrons in CdTe and CdS from oscillatory photoconductivity and the magnetophonon effect. Journal of Physics C: Solid State Physics, 1980, 13, 5215-5231.	1.5	10
197	Hole-state reversal and the role of residual strain in (In,Ga)As-GaAs superlattices. Physical Review B, 1991, 43, 12393-12400.	1.1	10
198	Optimization of the growth by MOVPE of strained GaSb/InAs double heterojunctions and superlattices on [111] GaAs substrates. Journal of Crystal Growth, 1992, 124, 395-400.	0.7	10

#	Article	IF	CITATIONS
199	Optically detected cyclotron resonance of GaAs quantum wells. Physica B: Condensed Matter, 1993, 184, 159-163.	1.3	10
200	Interband magneto-optical studies of resonant polaron coupling in CdTe/Cd1â^'xMnxTe quantum wells. Physical Review B, 1994, 50, 7596-7601.	1.1	10
201	MAGNETO-PHOTOLUMINESCENCE OF CHIRALITY-CHARACTERIZED SINGLE-WALLED CARBON NANOTUBES. International Journal of Modern Physics B, 2004, 18, 3509-3512.	1.0	10
202	Engineering Nanostructures by Binding Single Molecules to Single-Walled Carbon Nanotubes. ACS Nano, 2014, 8, 12748-12754.	7.3	10
203	Shubnikov-de Haas oscillations in n-channel silicon ã€^100〉 MOSFETS in magnetic fields up to 35 T. Solid State Communications, 1979, 31, 437-441.	0.9	9
204	Quantum transport in semiconductors. Contemporary Physics, 1980, 21, 501-521.	0.8	9
205	Inter-band magneto-absorption in a Ga0.47In0.53As-Al0.48In0.52As quantum well. Solid State Communications, 1986, 60, 83-86.	0.9	9
206	Transitions to confined states of the split-off band in GaAs-(Al,Ga)As multiple-quantum-well heterostructures. Physical Review B, 1987, 35, 7784-7786.	1.1	9
207	Bound state cyclotron resonance in modulation doped GaAs-AlxGa1â^'xAs quantum wells. Surface Science, 1990, 229, 488-492.	0.8	9
208	Magnetotransport investigations and modelling of the Hg1-xCdxTe-anodic oxide accumulation system. Semiconductor Science and Technology, 1992, 7, 810-817.	1.0	9
209	Pulsed and high temperature superconducting magnet technology in Oxford. Physica B: Condensed Matter, 1994, 201, 546-550.	1.3	9
210	A far infrared modulated photoluminescence (FIRM-PL) study of cyclotron resonance in a 2D electron gas in GaAs/AlxGa1-xAs heterojunctions. Semiconductor Science and Technology, 1999, 14, 768-774.	1.0	9
211	Mass enhancement and electron–hole coupling in InAs/GaSb bilayers studied by cyclotron resonance. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 289-292.	1.3	9
212	Optical investigations of the states in GaP:Ni. Journal of Physics C: Solid State Physics, 1982, 15, 7355-7365.	1.5	8
213	Raman scattering from ion-implanted carriers in n-GaAs. Solid-State Electronics, 1982, 25, 55-58.	0.8	8
214	The influence of Landau level broadening on temperature dependent cyclotron resonance linewidths in semiconductors. Solid State Communications, 1982, 41, 943-946.	0.9	8
215	Bulk and transfer doping effects in AlxGa1â^'xAs layers grown on semiâ€insulating GaAs substrates. Applied Physics Letters, 1984, 44, 629-631.	1.5	8
216	Pressure dependence study of the effective mass in Ga0.47In0.53As/InP heterojunctions. Superlattices and Microstructures, 1988, 4, 201-206.	1.4	8

#	Article	IF	CITATIONS
217	Superlattice dispersion in InGaAs/InGaAsP multi-quantum wells. Semiconductor Science and Technology, 1992, 7, 493-497.	1.0	8
218	Saddle-point excitons and intraband (Γ-Î) mixing in strained-layer superlattices. Physical Review B, 1992, 45, 4266-4273.	1.1	8
219	Magneto-optical studies of CdTe:Cd1â^'xMnxTe superlattices. Surface Science, 1992, 267, 354-359.	0.8	8
220	Ultra-high magnetic field cyclotron resonance of zero-gap InAs/GaSb superlattices. Physica B: Condensed Matter, 1993, 184, 168-172.	1.3	8
221	Low-field magnetotransport study of localization in a mesoscopic antidot array. Physical Review B, 1993, 47, 7354-7360.	1.1	8
222	Superlattice modification of the valence-band spin splitting inInxGa1â^'xAs/GaAs superlattices up to 45 T. Physical Review B, 1993, 48, 12323-12325.	1.1	8
223	Magneto-optical study ofGa1â^xInxSb/GaSb strained-quantum-well structures: Miniband formation and valence-band structure. Physical Review B, 1994, 49, 11210-11221.	1.1	8
224	Variations of the hole effective masses induced by tensile strain inIn1â^'xGaxAs(P)/InGaAsP heterostructures. Physical Review B, 1994, 50, 7660-7667.	1.1	8
225	Resonant cavity-enhanced (RCE) photodetector based on Ga(In)Sb for gas-sensing applications. Semiconductor Science and Technology, 1995, 10, 1017-1021.	1.0	8
226	Breakdown of the quantum Hall effect in an electron–hole system. Physica B: Condensed Matter, 2001, 298, 8-12.	1.3	8
227	Evidence for shallow bound states in PbTe. Physical Review B, 1983, 28, 2244-2248.	1.1	7
228	Thermoelectric power of GaInAs-InP and GaInAs-AlInAs heterojunctions in a magnetic field. Solid State Communications, 1986, 57, 377-380.	0.9	7
229	High order fractional quantisation in a two dimensional system. Solid State Communications, 1986, 60, 183-187.	0.9	7
230	Millimeter and submillimeter detection using Ga1?xAlxAs/GaAs heterostructures. Journal of Infrared, Millimeter and Terahertz Waves, 1987, 8, 793-802.	0.6	7
231	Magnetophonon resonance and remote phonon scattering in a GaInAs-AlInAs multi-quantum well. Semiconductor Science and Technology, 1989, 4, 116-118.	1.0	7
232	A transition from quantum well to superlattice behaviour in GaAsî—,AlAs short period superlattices. Superlattices and Microstructures, 1989, 6, 51-54.	1.4	7
233	Unusual Behaviour of the DX-Centre in GaAs:Ge. Japanese Journal of Applied Physics, 1993, 32, 218.	0.8	7
234	Designs for a quantum cascade laser using interband carrier extraction. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 84-88.	1.3	7

#	Article	IF	CITATIONS
235	Temperature-dependent cyclotron resonance in a hybridized electron–hole system in InAs/GaSb heterostructures. Semiconductor Science and Technology, 2007, 22, 194-202.	1.0	7
236	Investigation of InGaAsP-based solar cells for double-junction photovoltaic devices. Thin Solid Films, 2008, 516, 6744-6747.	0.8	7
237	The magnetophonon effect in p-type PbTe and Pb0.8Sn0.2Te. Journal of Physics C: Solid State Physics, 1977, 10, L611-L615.	1.5	6
238	An observation of central cell structure in magneto-impurity resonances in n-type InP. Journal of Physics C: Solid State Physics, 1978, 11, L783-L787.	1.5	6
239	Shallow donor spectroscopy in Ga <inf>x</inf> In <inf>1-x</inf> As <inf>y</inf> P <inf>1-y</inf> . IEEE Journal of Quantum Electronics, 1981, 17, 145-149.	1.0	6
240	High magnetic field characterisation of MOCVD heterostructures and superlattices. Journal of Crystal Growth, 1984, 68, 356-369.	0.7	6
241	The influence of a tilted magnetic field on the fractional quantum hall effect and the exchange enhancement of the spin splitting. Surface Science, 1988, 196, 242-251.	0.8	6
242	Shubnikov-de Haas effect of the quasi-two-dimensional electron system in InSb grain boundaries in tilted magnetic fields. Semiconductor Science and Technology, 1989, 4, 747-753.	1.0	6
243	Magneto-optical properties of Mn-based Il–VI semimagnetic superlattices. Physica B: Condensed Matter, 1993, 191, 156-170.	1.3	6
244	Optical and transport properties of piezoelectric [111]-oriented strainedGa1â^'xInxSb/GaSb quantum wells. Physical Review B, 1993, 48, 17885-17891.	1.1	6
245	One dimensional transport and gating of InAs/GaSb structures. Superlattices and Microstructures, 1994, 15, 41.	1.4	6
246	Cyclotron and intersubband resonance studies in [001] and piezoelectric [111] InAs/(Ga,In)Sb superlattices. Solid-State Electronics, 1994, 37, 1227-1230.	0.8	6
247	The upgrade of the Oxford High Magnetic Field Laboratory. IEEE Transactions on Applied Superconductivity, 2000, 10, 1552-1555.	1.1	6
248	Beyond 100 Tesla: Scientific experiments using single-turn coils. Comptes Rendus Physique, 2013, 14, 115-120.	0.3	6
249	Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes. Scientific Reports, 2016, 6, 37167.	1.6	6
250	Cyclotron resonance linewidth in n-InSb at low temperatures. Journal of Physics C: Solid State Physics, 1985, 18, 1495-1501.	1.5	5
251	Tilted field studies of Hg0.8Cd0.2Te accumulation layers. Surface Science, 1986, 170, 409-415.	0.8	5
252	Spectroscopic studies of miniband structure and band mixing in superlattices. Superlattices and Microstructures, 1990, 8, 151-154.	1.4	5

#	Article	IF	CITATIONS
253	Γ- and X-miniband structure in GaAsî—,AlAs short period superlattices. Surface Science, 1990, 228, 62-64.	0.8	5
254	Photoluminescence at high pressures from highly strained MOVPE grown GaAs/GaSb/GaAs heterostructures. Semiconductor Science and Technology, 1991, 6, 527-534.	1.0	5
255	The control and evaluation of blue shift in GalnAs/GalnAsP multiple quantum well structures for integrated lasers and Stark-effect modulators. Semiconductor Science and Technology, 1993, 8, 1156-1165.	1.0	5
256	Unusual behaviour of the Ge DX centre in GaAs: coexistence of two localized donor states. Journal of Physics Condensed Matter, 1993, 5, 5001-5008.	0.7	5
257	Tunable mid-IR emission using a novel quantum dot–quantum well coupled system. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 241-245.	1.3	5
258	Size resonant scattering from a hard cylindrical potential observed in the magnetoresistance of InSb. Journal of Physics C: Solid State Physics, 1979, 12, 2829-2837.	1.5	4
259	Impurity-associated magnetophonon resonance in n-type silicon. Journal of Physics C: Solid State Physics, 1979, 12, 5121-5143.	1.5	4
260	Strain and minibands in InGaAsî—,GaAs superlattices. Superlattices and Microstructures, 1991, 9, 521-525.	1.4	4
261	Magnetotransport investigations of the quasi-two-dimensional electron system in Hg1-xCdxTe bicrystals in tilted magnetic fields. Semiconductor Science and Technology, 1992, 7, 505-510.	1.0	4
262	Magnetotransport investigations at InSb and Hg1-xCdxTe bicrystals in tilted magnetic fields. Semiconductor Science and Technology, 1993, 8, S168-S171.	1.0	4
263	Selective area epitaxy of InGaAs/InGaAsP quantum wells studied by magnetotransport. Semiconductor Science and Technology, 1996, 11, 735-740.	1.0	4
264	Magneto-optical studies of compressively strained multiple quantum wells. Solid-State Electronics, 1996, 40, 597-600.	0.8	4
265	Magneto-photoluminescence of AlGaN/GaN quantum wells. Journal of Crystal Growth, 2001, 230, 487-491.	0.7	4
266	Spin polarization of 2D electrons in the quantum Hall ferromagnet: evidence for a partially polarized state around filling factor one. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 12-15.	1.3	4
267	Quantum Hall and insulating states of a 2-D electron–hole system. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 20, 160-171.	1.3	4
268	Carbon Nanotubes for Quantum Dot Photovoltaics with Enhanced Light Management and Charge Transport. ACS Photonics, 2018, 5, 4854-4863.	3.2	4
269	Activated DC transport and infrared absorption in epitaxial n-InP. Journal of Physics C: Solid State Physics, 1985, 18, 4021-4035.	1.5	3
270	Inter-band magneto-absorption in a Ga0.3In0.7As-InP strained layer superlattice. Semiconductor Science and Technology, 1986, 1, 350-353.	1.0	3

#	Article	IF	CITATIONS
271	A study of n-type GaxIn1-xAsyP1-y-InP quantum wells. Semiconductor Science and Technology, 1986, 1, 3-6.	1.0	3
272	Cyclotron resonance of the quasi-two-dimensional electron gas at Hg1-xCdxTe grain boundaries. Semiconductor Science and Technology, 1992, 7, 511-515.	1.0	3
273	Resonant magnetopolaron coupling to both polar and neutral optical phonons in the layer compound InSe. Surface Science, 1992, 263, 654-658.	0.8	3
274	Cyclotron resonance measurements of the hole mass in [0 0 1] and [1 1 1] InxGa1â^'xSb/GaSb quantum wells. Physica B: Condensed Matter, 1993, 184, 154-158.	1.3	3
275	High-field magneto-resistance in GaAs-GaAlAs heterojunctions. Physica B: Condensed Matter, 1993, 184, 197-201.	1.3	3
276	Photoconductivity studies of InAsP/InP heterostructures in applied magnetic and electric fields. Semiconductor Science and Technology, 1996, 11, 34-38.	1.0	3
277	Skyrmions and composite fermions in the limit of vanishing Zeeman energy. Journal of Physics Condensed Matter, 1998, 10, 11327-11335.	0.7	3
278	Cyclotron resonance in an asymmetric electron–hole InAs/GaSb DHET structure. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 660-663.	1.3	3
279	Intersubband transitions in InAs/GaSb superlattices in a parallel magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 93-96.	1.3	3
280	InGaAs/GaAs quantum wells and quantum dots on (111)B orientation. Solid State Communications, 2001, 117, 649-654.	0.9	3
281	Magnetic-field-induced suppression of tunnelling into a two-dimensional electron system. Journal of Physics Condensed Matter, 2002, 14, 5561-5574.	0.7	3
282	Magneto-photoluminescence studies of a novel quantum dot–quantum well coupled system. Physica Status Solidi (B): Basic Research, 2003, 238, 281-284.	0.7	3
283	Mid-infrared luminescence from coupled quantum dots and wells. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 341-344.	1.3	3
284	BAND STRUCTURE AND ELECTRON VELOCITY MEASUREMENT IN CARBON NANOTUBES AND GRAPHENE. International Journal of Modern Physics B, 2009, 23, 2655-2664.	1.0	3
285	Reduced Stark shift in three-dimensionally confined GaN/AlGaN asymmetric multi-quantum disks. Optical Materials Express, 2015, 5, 849.	1.6	3
286	Multi-band magnetotransport in exfoliated thin films of Cu _{<i>x</i> } Bi ₂ Se ₃ . Journal of Physics Condensed Matter, 2018, 30, 155302.	0.7	3
287	The band structure of Pb1?x Ge x Te above and below the structural phase transition. Journal of Infrared, Millimeter and Terahertz Waves, 1980, 1, 485-499.	0.6	2
288	Two-dimensional conductivity in the contact regions of silicon MOSFETs. Journal of Physics C: Solid State Physics, 1980, 13, L619-L622.	1.5	2

#	Article	IF	CITATIONS
289	Double source photoconductivity of InP:Fe. Physica Status Solidi A, 1985, 88, 347-353.	1.7	2
290	A study of the Cr and Fe deep acceptors in InP by the nuclear transmutation back doping technique. Journal Physics D: Applied Physics, 1985, 18, 259-267.	1.3	2
291	Tilted field cyclotron resonance of accumulation layer electrons on nî—,Hg0.8Cd0.2Te. Solid State Communications, 1986, 59, 819-823.	0.9	2
292	2D cyclotron resonance and magneto-polaron coupling to homopolar and lo phonons in the layered semiconductor InSe. Surface Science, 1990, 229, 496-500.	0.8	2
293	Valence band spin of semiconductor superlattices. Surface Science, 1992, 267, 365-369.	0.8	2
294	Magnetic-field- and temperature-dependent exciton delocalisation in a CdTe/Cd1â^'xMnxTe superlattice. Physica B: Condensed Matter, 1993, 184, 455-459.	1.3	2
295	Direct observation of the semimetal to semiconductor transition in crossed band gap superlattices at magnetic fields of up to 150 T. Solid-State Electronics, 1994, 37, 1027-1030.	0.8	2
296	Optical studies of localized excitons in symmetric coupled quantum wells. Superlattices and Microstructures, 1997, 21, 597-600.	1.4	2
297	Edge effects in an insulating state of an electron–hole system in magnetic field. Physica B: Condensed Matter, 2001, 298, 28-32.	1.3	2
298	Filamentary High-Resolution Electrical Probes for Nanoengineering. Nano Letters, 2020, 20, 1067-1073.	4.5	2
299	Improving performance of fully scalable, flexible transparent conductive films made from carbon nanotubes and ethylene-vinyl acetate. Energy Reports, 2022, 8, 48-60.	2.5	2
300	A time-dependent anomalous threshold in silicon MOS devices fabricated on high-resistivity substrates. Journal Physics D: Applied Physics, 1976, 9, L109-L113.	1.3	1
301	Magneto-optics and strain effects in GalnAsî—,AllnAs and GalnAsî—,InP quantum wells. Superlattices and Microstructures, 1987, 3, 69-74.	1.4	1
302	Magnetotransport studies of GaSb/InAs crossed gap heterostructures in high magnetic fields. Physica B: Condensed Matter, 1993, 184, 202-205.	1.3	1
303	Disappearance of magnetophonon resonance at high magnetic fields in GaAs/GaAlAs heterojunctions. Surface Science, 1994, 305, 327-332.	0.8	1
304	Magneto-optical studies of the type I/type II crossover and band offset in superlattices in magnetic fields up to 45 T. Solid-State Electronics, 1996, 40, 69-74.	0.8	1
305	A digital quantum Hall effect. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 836-839.	1.3	1
306	Atomic Self-ordering in Heteroepitaxially Grown Semiconductor Quantum Dots due to Relaxation of External Lattice Mismatch Strains. Materials Research Society Symposia Proceedings, 2001, 696, 1.	0.1	1

#	Article	IF	CITATIONS
307	Atomic Self-Ordering in Heteroepitaxially Grown Semiconductor Quantum Dots Due to Relaxation of External Lattice Mismatch Strains. Materials Research Society Symposia Proceedings, 2001, 707, 881.	0.1	1
308	The effect of the cross-gap alignment on magneto-transport in short period InAs/GaSb superlattices. Physica B: Condensed Matter, 2001, 298, 344-347.	1.3	1
309	The quantum Hall effect in an InAs/GaSb based electron–hole system and its current-driven breakdown. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 161-164.	1.3	1
310	Anomalous g-factors and diamagnetic shifts of biexcitons in ZnS quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 507-511.	1.3	1
311	Magnetoresistance studies of strongly coupled superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 316-319.	1.3	1
312	Far infrared modulated photoluminescence in InSb quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 598-602.	1.3	1
313	Current-driven breakdown of the quantized Hall states of a broken-gap 2D electron–hole system. Semiconductor Science and Technology, 2006, 21, 1758-1763.	1.0	1
314	Magnetoresistance of vertical transport in InAs/GaSb superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 736-740.	1.3	0
315	Mid-infrared electroluminescence from coupled quantum dots and wells. Journal of Applied Physics, 2004, 96, 2725-2730.	1.1	0
316	Implementation and study of photovoltaic cells based on InP lattice-matched InGaAs and InGaAsP. , 2007, , .		0
317	Ultrafast Charge Separation at a Single-walled Carbon Nanotube – Polymer Interface. Materials Research Society Symposia Proceedings, 2011, 1286, 7.	0.1	0
318	Environment induced variation in the photoconductivity of graphene observed by terahertz spectroscopy. , 2012, , .		0
319	Independence of optical absorption on Auger ionization in single-walled carbon nanotubes revealed by ultrafast e–h photodoping. New Journal of Physics, 2016, 18, 023051.	1.2	0