Robin John Nicholas

List of Publications by Citations

Source: https://exaly.com/author-pdf/1928499/robin-john-nicholas-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 315
 13,496
 52
 107

 papers
 citations
 h-index
 g-index

 320
 14,473
 4.6
 6.16

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
315	Direct measurement of the exciton binding energy and effective masses for charge carriers in organicIhorganic tri-halide perovskites. <i>Nature Physics</i> , 2015 , 11, 582-587	16.2	1282
314	Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. <i>Nano Letters</i> , 2014 , 14, 5561-8	11.5	944
313	Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. <i>Nano Letters</i> , 2014 , 14, 724-30	11.5	917
312	Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. <i>Nature Nanotechnology</i> , 2007 , 2, 640-6	28.7	880
311	Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. <i>Energy and Environmental Science</i> , 2016 , 9, 962-970	35.4	457
310	Efficient perovskite solar cells by metal ion doping. Energy and Environmental Science, 2016, 9, 2892-29	03 5.4	301
309	Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3543-53	16.4	264
308	A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. <i>Energy and Environmental Science</i> , 2017 , 10, 145-152	35.4	253
307	Exchange enhancement of the spin splitting in a GaAs-GaxAl. <i>Physical Review B</i> , 1988 , 37, 1294-1302	3.3	241
306	Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. <i>Nature Materials</i> , 2005 , 4, 481-5	27	223
305	Magneto-optics in GaAs-Ga1-xAlxAs quantum wells. <i>Physical Review B</i> , 1986 , 34, 4002-4009	3.3	217
304	Structured Organic-Inorganic Perovskite toward a Distributed Feedback Laser. <i>Advanced Materials</i> , 2016 , 28, 923-9	24	209
303	Observation of magnetic excitons and spin waves in activation studies of a two-dimensional electron gas. <i>Physical Review B</i> , 1990 , 41, 1129-1134	3.3	174
302	Measurements of the effective mass and scattering times of composite fermions from magnetotransport analysis. <i>Physical Review Letters</i> , 1994 , 72, 1906-1909	7.4	158
301	Modification of the electron-phonon interactions in GaAs-GaAlAs heterojunctions. <i>Physical Review Letters</i> , 1987 , 58, 77-80	7.4	142
300	Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 4207-12	6.4	126
299	UVIIis absorption spectroscopy of carbon nanotubes: Relationship between the ⊞lectron plasmon and nanotube diameter. <i>Chemical Physics Letters</i> , 2010 , 493, 19-23	2.5	124

298	An experimental determination of the effective masses for GaxIn1\(\mathbb{A}\)AsyP1\(\mathbb{J}\) alloys grown on InP. <i>Applied Physics Letters</i> , 1979 , 34, 492-494	3.4	112
297	Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1851-1855	6.4	108
296	Research Update: Strategies for improving the stability of perovskite solar cells. <i>APL Materials</i> , 2016 , 4, 091503	5.7	106
295	Cyclotron resonance studies on bulk and two-dimensional conduction electrons in InSe. <i>Solid State Communications</i> , 1982 , 44, 379-383	1.6	100
294	Extreme sensitivity of graphene photoconductivity to environmental gases. <i>Nature Communications</i> , 2012 , 3, 1228	17.4	94
293	A study of the conduction band non-parabolicity, anisotropy and spin splitting in GaAs and InP. <i>Semiconductor Science and Technology</i> , 1987 , 2, 568-577	1.8	88
292	Frequency-shifted polaron coupling in Ga0.47In0.53As heterojunctions. <i>Physical Review Letters</i> , 1985 , 55, 883-886	7.4	87
291	Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes. <i>Chemical Physics Letters</i> , 2004 , 386, 239-243	2.5	86
290	Noncovalent binding of carbon nanotubes by porphyrin oligomers. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2313-6	16.4	85
289	The magnetophonon effect. <i>Progress in Quantum Electronics</i> , 1985 , 10, 1-75	9.1	85
289 288	The magnetophonon effect. <i>Progress in Quantum Electronics</i> , 1985 , 10, 1-75 Intersubband resonant scattering in GaAs-Ga1-xAlxAs heterojunctions. <i>Physical Review B</i> , 1992 , 46, 124		
288	Intersubband resonant scattering in GaAs-Ga1-xAlxAs heterojunctions. <i>Physical Review B</i> , 1992 , 46, 124 Cyclotron resonance and the magnetophonon effect in GaxIn1\(\mathbb{B}\)AsyP1\(\mathbb{J}\). <i>Applied Physics Letters</i> ,	3 <u>9.3</u> 124 3.4	80
288	Intersubband resonant scattering in GaAs-Ga1-xAlxAs heterojunctions. <i>Physical Review B</i> , 1992 , 46, 124 Cyclotron resonance and the magnetophonon effect in GaxIn1\(\mathbb{\text{B}}\)AsyP1\(\mathbb{\text{J}}\). <i>Applied Physics Letters</i> , 1980 , 37, 178-180	3 <u>9.3</u> 124 3.4	80 78
288 287 286	Intersubband resonant scattering in GaAs-Ga1-xAlxAs heterojunctions. <i>Physical Review B</i> , 1992 , 46, 124 Cyclotron resonance and the magnetophonon effect in GaxIn1\(\mathbb{\text{M}}\)AsyP1\(\mathbb{\text{L}}\). <i>Applied Physics Letters</i> , 1980 , 37, 178-180 Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite. <i>ACS Energy Letters</i> , 2019 , 4, 299-30 Investigating the Role of 4-Tert Butylpyridine in Perovskite Solar Cells. <i>Advanced Energy Materials</i> ,	3 9.3 124 3.4 9520.1	80 78 76
288 287 286	Intersubband resonant scattering in GaAs-Ga1-xAlxAs heterojunctions. <i>Physical Review B</i> , 1992 , 46, 124 Cyclotron resonance and the magnetophonon effect in GaxIn1\(\mathbb{A}\)AsyP1\(\mathbb{J}\). <i>Applied Physics Letters</i> , 1980 , 37, 178-180 Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite. <i>ACS Energy Letters</i> , 2019 , 4, 299-30 Investigating the Role of 4-Tert Butylpyridine in Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1601079 Ultrafast charge separation at a polymer-single-walled carbon nanotube molecular junction. <i>Nano</i>	39.3124 3.4 9520.1 21.8	80 78 76
288 287 286 285 284	Intersubband resonant scattering in GaAs-Ga1-xAlxAs heterojunctions. <i>Physical Review B</i> , 1992 , 46, 124 Cyclotron resonance and the magnetophonon effect in GaxIn1\(\mathbb{R}\)AsyP1\(\mathbb{L}\). <i>Applied Physics Letters</i> , 1980 , 37, 178-180 Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite. <i>ACS Energy Letters</i> , 2019 , 4, 299-30 Investigating the Role of 4-Tert Butylpyridine in Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1601079 Ultrafast charge separation at a polymer-single-walled carbon nanotube molecular junction. <i>Nano Letters</i> , 2011 , 11, 66-72	3.4 3.4 21.8	78 76

280	Two-dimensional spin confinement in strained-layer quantum wells. <i>Physical Review B</i> , 1990 , 42, 9237-9	2349	69
279	A study of the deep acceptor levels of iron in InP. Journal of Physics C: Solid State Physics, 1979, 12, 5145	5-5155	69
278	Cyclotron-resonance study of nonparabolicity and screening in GaAs-Ga1-xAlxAs heterojunctions. <i>Physical Review B</i> , 1987 , 36, 4789-4795	3.3	67
277	Quantum transport in GaInAs-AlInAs heterojunctions, and the influence of intersubband scattering. <i>Solid State Communications</i> , 1982 , 43, 907-911	1.6	66
276	Photoluminescence of GaSb grown by metal-organic vapour phase epitaxy. <i>Semiconductor Science and Technology</i> , 1991 , 6, 45-53	1.8	65
275	Carrier-concentation-dependent electron-LO-phonon coupling observed in GaAs-(Ga,Al)As heterojunctions by resonant-polaron cyclotron resonance. <i>Physical Review B</i> , 1988 , 38, 13133-13142	3.3	62
274	An experimental determination of enhanced electron g-factors in GaInAs-A1InAs heterojunctions. <i>Solid State Communications</i> , 1983 , 45, 911-914	1.6	61
273	Odd and even fractionally quantized states in GaAs-GaAlAs heterojunctions. <i>Surface Science</i> , 1986 , 170, 141-147	1.8	59
272	Dopant-Free Planar ntp Perovskite Solar Cells with Steady-State Efficiencies Exceeding 18%. <i>ACS Energy Letters</i> , 2017 , 2, 622-628	20.1	58
271	Controlled orientation of ellipsoidal fullerene C70 in carbon nanotubes. <i>Applied Physics Letters</i> , 2004 , 84, 792-794	3.4	58
270	Gamma -X mixing in the miniband structure of a GaAs/AlAs superlattice. <i>Physical Review Letters</i> , 1989 , 63, 2284-2287	7.4	58
269	Chirality assignment of single-walled carbon nanotubes with strain. <i>Physical Review Letters</i> , 2004 , 93, 156104	7.4	55
268	Evidence for Anderson localisation in Landau level tails from the analysis of two-dimensional Shubnikov Heaas conductivity minima. <i>Solid State Communications</i> , 1977 , 23, 341-345	1.6	55
267	Direct spectroscopic evidence of energy transfer from photo-excited semiconducting polymers to single-walled carbon nanotubes. <i>Nanotechnology</i> , 2008 , 19, 095603	3.4	54
266	Optically detected cyclotron resonance of GaAs quantum wells: Effective-mass measurements and offset effects. <i>Physical Review B</i> , 1992 , 46, 13394-13399	3.3	53
265	The Impact of Phase Retention on the Structural and Optoelectronic Properties of Metal Halide Perovskites. <i>Advanced Materials</i> , 2016 , 28, 10757-10763	24	52
264	First observation of the quantum Hall effect in a Ga0.47In0.53As-InP heterostructure with three electric subbands. <i>Applied Physics Letters</i> , 1986 , 48, 712-714	3.4	52
263	Fractional quantum Hall effect in tilted magnetic fields. <i>Physical Review B</i> , 1987 , 36, 4528-4530	3.3	52

[1991-2006]

262	The effects of nitrogen and boron doping on the optical emission and diameters of single-walled carbon nanotubes. <i>Carbon</i> , 2006 , 44, 2752-2757	4	51	
261	Carrier-concentration-dependent polaron cyclotron resonance in GaAs heterostructures. <i>Physical Review B</i> , 1992 , 45, 4296-4300		49	
260	Magnetotransport in a pseudomorphic GaAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure with a Si delta -doping layer. <i>Physical Review B</i> , 1995 , 52, 12218-12231		48	
259	Electronic and mechanical modification of single-walled carbon nanotubes by binding to porphyrin oligomers. <i>ACS Nano</i> , 2011 , 5, 2307-15	7	47	
258	Anomalies in the cyclotron resonance in high-mobility GaAs-Ga1-xAlxAs heterojunctions. <i>Physical Review B</i> , 1989 , 39, 10955-10962		47	
257	Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. <i>Nanotechnology</i> , 2005 , 16, S202-S205		46	
256	New phases of the 2D electron system in the ultra-quantum limit observed by cyclotron resonances. <i>Physical Review Letters</i> , 1993 , 70, 2150-2153		46	
255	Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum. <i>Nature</i> Communications, 2015 , 6, 7536	4	45	
254	Wavelength-dependent photoconduction effects on the second sub-band occupancy in (Al, Ga)As/GaAs heterojunctions. <i>Semiconductor Science and Technology</i> , 1987 , 2, 783-789		45	
253	Cyclotron phonon emission and electron energy loss rates in GaAs-GaAlAs heterojunctions. Semiconductor Science and Technology, 1989, 4, 879-884		44	
252	Two-dimensional magnetophonon resonance. I. GaInAs-InP superlattices. <i>Journal of Physics C: Solid State Physics</i> , 1983 , 16, L573-L578		44	
251	Highly Crystalline Methylammonium Lead Tribromide Perovskite Films for Efficient Photovoltaic Devices. <i>ACS Energy Letters</i> , 2018 , 3, 1233-1240	.1	43	
250	GaSb heterostructures grown by MOVPE. <i>Journal of Crystal Growth</i> , 1988 , 93, 70-78		41	
249	Cyclotron resonance of electrons in a narrow GaAs/(Ga,Al)As quantum well: Polaron effects and non-parabolicity. <i>Surface Science</i> , 1988 , 196, 429-436		41	
248	Effect masses and non-parabolicity in GaxIn1-xAs. Journal of Physics C: Solid State Physics, 1985, 18, 2667-26	576	41	
247	Raman scattering in InP1-xAsxalloys. <i>Journal of Physics C: Solid State Physics</i> , 1980 , 13, 899-910		41	
246	Observation of decoupled heavy and light holes in GaAs-Ga1-xAlxAs quantum wells by magnetoreflectivity. <i>Physical Review B</i> , 1988 , 38, 1323-1329		40	
245	Observation of optically detected magnetophonon resonance. <i>Physical Review Letters</i> , 1991 , 66, 794-797, 4		39	

244	Experimental studies of the nu =1/5 hierarchy in the fractional quantum Hall effect. <i>Physical Review B</i> , 1988 , 38, 2200-2203	3.3	38
243	Two-dimensional magnetophonon resonance. II. GaInAs-AlInAs heterojunctions. <i>Journal of Physics C: Solid State Physics</i> , 1983 , 16, L579-L584		37
242	Spatially resolved studies of the phases and morphology of methylammonium and formamidinium lead tri-halide perovskites. <i>Nanoscale</i> , 2017 , 9, 3222-3230	7.7	36
241	Growth of InAs/GaSb strained layer superlattices. I. <i>Journal of Crystal Growth</i> , 1994 , 145, 778-785	1.6	36
240	An investigation of the valley splitting in n-channel silicon <100> inversion layers. <i>Solid State Communications</i> , 1980 , 34, 51-55	1.6	35
239	Quantum oscillations at a Ga0.47In0.53As?InP heterojunction interface. <i>Solid State Communications</i> , 1982 , 43, 825-828	1.6	35
238	Terahertz Excitonic Response of Isolated Single-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18106-18109	3.8	34
237	Effective mass and quantum lifetime in a Si/Si0.87Ge0.13/Si two-dimensional hole gas. <i>Applied Physics Letters</i> , 1994 , 64, 357-359	3.4	34
236	Influence of acoustic phonons on inter-subband scattering in GaAs-GaAlAs heterojunctions. <i>Semiconductor Science and Technology</i> , 1989 , 4, 885-888	1.8	34
235	GaSb/GaInSb quantum wells grown by metalorganic vapor phase epitaxy. <i>Applied Physics Letters</i> , 1989 , 54, 922-924	3.4	34
234	Thiophene-based dyes for probing membranes. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 3792-802	3.9	33
233	Cyclotron resonance and screening effects in GaAs-GaAlAs heterojunctions. <i>Superlattices and Microstructures</i> , 1986 , 2, 319-322	2.8	33
232	Subband-Landau level coupling in a two-dimensional electron gas in tilted magnetic fields. <i>Journal of Physics C: Solid State Physics</i> , 1986 , 19, L107-L112		33
231	Nanoengineering coaxial carbon nanotube-dual-polymer heterostructures. ACS Nano, 2012, 6, 6058-66	16.7	32
230	. Journal of Physics C: Solid State Physics, 1986, 19, 77-92		32
229	Phonon drag contribution to thermoelectric power in two-dimensional systems. <i>Journal of Physics C: Solid State Physics</i> , 1985 , 18, L695-L698		32
228	Impact of microstructure on the electron B ole interaction in lead halide perovskites. <i>Energy and Environmental Science</i> , 2017 , 10, 1358-1366	35.4	31
227	Chirality-dependent boron-mediated growth of nitrogen-doped single-walled carbon nanotubes. <i>Physical Review B</i> , 2005 , 72,	3.3	31

(2019-2006)

226	Temperature induced restoration of fluorescence from oxidised single-walled carbon nanotubes in aqueous sodium dodecylsulfate solution. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 3547-51	3.6	31	
225	Strain reconstruction of the valence band in Ga1 lkInxSb/GaSb quantum wells. <i>Surface Science</i> , 1990 , 228, 270-274	1.8	30	
224	Two-dimensional magnetophonon resonance in GaInAs-InP and GaInAs-AlInAs heterojunctions and superlattices. <i>Surface Science</i> , 1984 , 142, 368-374	1.8	30	
223	Cyclotron resonance and polaron effects in a two-dimensional electron gas in GaInAs. <i>Surface Science</i> , 1984 , 142, 380-387	1.8	30	
222	Temperature dependence of the cyclotron-resonance linewidth in GaAs-Ga1-xAlxAs heterojunctions. <i>Physical Review B</i> , 1989 , 39, 13302-13309	3.3	29	
221	On the Electronic g-Faetor in n-Type Silicon Inversion Layers. <i>Physica Status Solidi (B): Basic Research</i> , 1980 , 99, 237-242	1.3	29	
220	Evidence for a reduction in the momentum matrix element P2due to alloy disorder in InAp1-xPx. <i>Journal of Physics C: Solid State Physics</i> , 1979 , 12, 1641-1651		28	
219	GaAs/GaSb strained-layer heterostructures deposited by metalorganic vapor phase epitaxy. <i>Applied Physics Letters</i> , 1989 , 54, 1241-1243	3.4	27	
218	Competition between LO and TO phonon scattering in GaAs/GaAlAs heterojunctions. <i>Surface Science</i> , 1988 , 196, 451-458	1.8	27	
217	Magnetic separation of Fe catalyst from single-walled carbon nanotubes in an aqueous surfactant solution. <i>Carbon</i> , 2005 , 43, 1151-1155	10.4	26	
216	An ultrafast carbon nanotube terahertz polarisation modulator. <i>Journal of Applied Physics</i> , 2014 , 115, 203108	2.5	25	
215	Influence of light on the confinement potential of GaAs/AlxGa1-xAs heterojunctions. <i>Physical Review B</i> , 1995 , 52, 2688-2696	3.3	25	
214	Cyclotron resonance in InAs/GaSb heterostructures. Semiconductor Science and Technology, 1992, 7, 985	5 -9 93	25	
213	Interface studies of InAs/GaSb superlattices by Raman scattering. Surface Science, 1992 , 267, 176-180	1.8	25	
212	Energy relaxation mechanisms in n-type GaAs from magnetophonon spectroscopy. <i>Journal of Physics C: Solid State Physics</i> , 1976 , 9, 1253-1262		25	
211	Growth of InAsGaSb strained layer superlattices. II. <i>Journal of Crystal Growth</i> , 1995 , 146, 495-502	1.6	24	
210	Resonant 2D magnetopolarons in accumulation layers on n-Hg0.8Cd0.2Te. <i>Solid State Communications</i> , 1986 , 58, 833-838	1.6	24	
209	Giant Fine Structure Splitting of the Bright Exciton in a Bulk MAPbBr Single Crystal. <i>Nano Letters</i> , 2019 , 19, 7054-7061	11.5	23	

208	Metal-insulator oscillations in a two-dimensional electron-hole system. <i>Physical Review Letters</i> , 2000 , 85, 2364-7	7.4	23
207	Enhanced carrier densities and device performance in piezoelectric pseudomorphic high-electron mobility transistor structures. <i>Applied Physics Letters</i> , 1992 , 61, 1072-1074	3.4	23
206	Inter-subband scattering rates in GaAs-GaAlAs heterojunctions. <i>Semiconductor Science and Technology</i> , 1990 , 5, 1081-1087	1.8	23
205	Two-dimensional behaviour due to electrons bound at defects in InSe. Surface Science, 1982 , 113, 339-3	346 8	23
204	Evidence for a contribution to the extrinsic photoconductive signal by hopping through excited states of the donors in silicon and CdTe. <i>Solid State Communications</i> , 1977 , 24, 55-60	1.6	23
203	[001]- and piezoelectric-[111]-oriented InAs/GaSb structures under hydrostatic pressure. <i>Physical Review B</i> , 1994 , 49, 16614-16621	3.3	22
202	Observation of magnetic-field-induced semimetal-semiconductor transitions in crossed-gap superlattices by cyclotron resonance. <i>Physical Review B</i> , 1994 , 49, 10474-10483	3.3	22
201	High-pressure investigation of GaSb and Ga1-xInxSb/GaSb quantum wells. <i>Physical Review B</i> , 1991 , 43, 4994-5000	3.3	22
200	Oscillatory behavior in the photoluminescence excitation and photoconductivity spectra of GaAs-AlAs superlattices. <i>Physical Review B</i> , 1989 , 39, 1219-1223	3.3	22
199	Pressure dependence of light-hole transport in strained InGaAs/GaAs. <i>Surface Science</i> , 1990 , 229, 122-1	2<u>6</u>8	22
198	The electric sub-band structure of electron accumulation layers in InSe from Shubnikov-de Haas oscillations and inter-sub-band resonance. <i>Journal of Physics C: Solid State Physics</i> , 1983 , 16, 4285-4295		22
197	Cyclotron resonance linewidth in a two-dimensional electron gas. <i>Surface Science</i> , 1982 , 113, 326-332	1.8	22
196	Production of high-purity single-chirality carbon nanotube hybrids by selective polymer exchange. <i>Small</i> , 2013 , 9, 2245-9	11	21
195	Introduction. Carbon-based electronics: fundamentals and device applications. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2008 , 366, 189-93	3	21
194	Devices and desires in the 2-4 mu m region based on antimony-containing III-V heterostructures grown by MOVPE. <i>Semiconductor Science and Technology</i> , 1993 , 8, S380-S385	1.8	21
193	An optically detected cyclotron resonance study of bulk GaAs. <i>Semiconductor Science and Technology</i> , 1994 , 9, 198-206	1.8	21
192	Collapse of high field magnetophonon resonance in GaAs-GaAlAs heterojunctions. <i>Physical Review Letters</i> , 1994 , 73, 589-592	7.4	21
191	The analysis of thermal activation of two-dimensional Shubnikov-De Haas conductivity minima and maxima. <i>Surface Science</i> , 1978 , 73, 106-115	1.8	21

(2015-2001)

190	MOVPE grown self-assembled and self-ordered InSb quantum dots in a GaSb matrix assessed by AFM, CTEM, HRTEM and PL. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2001 , 80, 112-115	3.1	20
189	Searches for skyrmions in the limit of zero -factor. Semiconductor Science and Technology, 1998, 13, 671	-6789	20
188	Cyclotron resonance of high-mobility GaAs/AlGaAs (311) 2DHGs. <i>Semiconductor Science and Technology</i> , 1993 , 8, 1465-1469	1.8	20
187	High magnetic field studies of the crossed-gap superlattice system InAs/GaSb. <i>Physica B: Condensed Matter</i> , 1993 , 184, 268-276	2.8	20
186	Quantum transport in accumulation layers on Cd0.2Hg0.8Te. <i>Journal of Physics C: Solid State Physics</i> , 1986 , 19, 35-42		20
185	Frequency shifted polaron coupling in GalnAs heterostructures. Surface Science, 1986 , 170, 542-548	1.8	20
184	High field magneto-transport measurements in GaAs-GaAlAs multilayers. <i>Surface Science</i> , 1982 , 113, 290-294	1.8	20
183	High-field magnetoresistance in GaAs/Ga0.7Al0.3As heterojunctions arising from elastic and inelastic scattering. <i>Physical Review B</i> , 1993 , 48, 5457-5468	3.3	19
182	Cyclotron resonance of both magnetopolaron branches for polar and neutral optical phonon coupling in the layer compound InSe. <i>Physical Review B</i> , 1992 , 45, 12144-12147	3.3	19
181	GaSb/InAs heterojunctions grown by MOVPE: Effect of gas switching sequences on interface quality. <i>Journal of Crystal Growth</i> , 1991 , 110, 677-682	1.6	19
180	Limits on band discontinuities in GaAs-GaAlAs heterostructures deduced from optical photoresponse. <i>Journal of Physics C: Solid State Physics</i> , 1985 , 18, L891-L896		19
179	Magnetoconductivity in a mesoscopic antidot array. <i>Physical Review B</i> , 1993 , 47, 7348-7353	3.3	18
178	Persistent photoconductivity in Ga0.49In0.51P/GaAs heterojunctions. <i>Journal of Applied Physics</i> , 1989 , 65, 2756-2760	2.5	18
177	Shallow donor spectroscopy and polaron coupling in Ga0.47In0.53As. <i>Journal of Physics C: Solid State Physics</i> , 1985 , 18, L427-L431		18
176	The magnetophonon effect in InAs1-xPx. <i>Journal of Physics C: Solid State Physics</i> , 1979 , 12, 1653-1664		18
175	Solubilization of Carbon Nanotubes with Ethylene-Vinyl Acetate for Solution-Processed Conductive Films and Charge Extraction Layers in Perovskite Solar Cells. <i>ACS Applied Materials & Company: Interfaces</i> , 2019 , 11, 1185-1191	9.5	18
174	Hot carrier relaxation of Dirac fermions in bilayer epitaxial graphene. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 164202	1.8	17
173	Surface-Effect-Induced Optical Bandgap Shrinkage in GaN Nanotubes. <i>Nano Letters</i> , 2015 , 15, 4472-6	11.5	17

172	Orientation and pressure dependence of the band overlap in InAs/GaSb structures. <i>Semiconductor Science and Technology</i> , 1994 , 9, 118-122	1.8	17
171	Evolution of the electronic states of coupled (In,Ga)As-GaAs quantum wells into superlattice minibands. <i>Physical Review B</i> , 1990 , 42, 3024-3029	3.3	17
170	Magneto-optical studies of GainAs?InP quantum wells. Superlattices and Microstructures, 1987, 3, 471-4	7 5 .8	17
169	Infrared single wavelength gas composition monitoring for metalorganic vapour-phase epitaxy. Journal of Crystal Growth, 2000 , 221, 166-171	1.6	16
168	Optical and magnetotransport properties of semimetallic InAs/(In,Ga)Sb superlattices. <i>Physica B: Condensed Matter</i> , 1994 , 201, 271-279	2.8	16
167	GaSb/InAs heterojunctions grown by MOVPE. <i>Journal of Crystal Growth</i> , 1991 , 107, 422-427	1.6	16
166	Magnetotransport of piezoelectric [111] oriented strained quantum wells. <i>Applied Physics Letters</i> , 1991 , 59, 659-661	3.4	16
165	Studies deep chromium acceptor levels in InP. Journal of Physics C: Solid State Physics, 1981, 14, 2135-21	146	16
164	The effects of high uniaxial stress on the far infra-red impurity spectra of high purity n- and p-type silicon. <i>Solid State Communications</i> , 1978 , 26, 11-15	1.6	16
163	Hyperspectral imaging of exciton photoluminescence in individual carbon nanotubes controlled by high magnetic fields. <i>Nano Letters</i> , 2014 , 14, 5194-200	11.5	15
162	Internal self-ordering in In(Sb,As), (In,Ga)Sb, and (Cd,Zn,Mn)Se nano-agglomerates/quantum dots. <i>Applied Physics Letters</i> , 2001 , 79, 946-948	3.4	15
161	Electroluminescence out to 2.1 mu m observed in GaSb/InxGa1-xSb quantum wells grown by MOVPE. <i>Semiconductor Science and Technology</i> , 1994 , 9, 87-90	1.8	15
160	Miniband structure in InxGa1-xAs-GaAs strained-layer superlattices. <i>Physical Review B</i> , 1991 , 43, 2246-2	2 <u>5</u> .4	15
159	Piezoelectric control of doping and band structure in the crossed gap system GaSb/InAs. <i>Surface Science</i> , 1992 , 263, 575-579	1.8	15
158	Measurements of hot electron magnetophonon resonance in GaAs/GaAlAs heterostructures. <i>Solid-State Electronics</i> , 1988 , 31, 781-784	1.7	15
157	High magnetic field studies of the two-dimensional electron gas in GaInAs-InP superlattices. <i>Applied Physics Letters</i> , 1983 , 43, 293-295	3.4	15
156	Improved photoluminescence from electrochemically passivated GaSb. <i>Semiconductor Science and Technology</i> , 1997 , 12, 413-418	1.8	14
155	Bandgap-selective chemical doping of semiconducting single-walled carbon nanotubes. Nanotechnology, 2004 , 15, 1844-1847	3.4	14

154	A modified phenomenological description of the exchange interactions in dilute magnetic semiconductors. <i>Semiconductor Science and Technology</i> , 1995 , 10, 791-796	1.8	14	
153	Thermoelectric power of GaAs-GaAlAs heterostructures in high magnetic fields. <i>Solid State Communications</i> , 1986 , 57, 381-384	1.6	14	
152	A study of parallel-field magnetoresistance of accumulation layers at anodic oxide films on n-(Hg, Cd)Te and the diamagnetic Shubnikov-de Haas effect. <i>Semiconductor Science and Technology</i> , 1988 , 3, 654-663	1.8	14	
151	Structural and electronic properties of PbTe/Pb1\(\mathbb{R}\)SnxTe superlattices. Surface Science, 1984 , 142, 571	-57 <u>/8</u> 8	14	
150	Cyclotron resonance of electrons and holes in graphene monolayers. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2008 , 366, 237-43	3	13	
149	Properties of narrow gap quantum dots and wells in the InAs/InSb/GaSb systems. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 20, 204-210	3	13	
148	Piezoelectric effects in superlattices. Semiconductor Science and Technology, 1993, 8, S367-S372	1.8	13	
147	Intrinsic quantum Hall effect in InAs/Ga1 IIInxSb crossed gap heterostructures in high magnetic fields. Surface Science, 1994, 305, 156-160	1.8	13	
146	The pressure dependence of the effective mass in a GaAs/AlGaAs heterojunction. <i>Semiconductor Science and Technology</i> , 1992 , 7, 787-792	1.8	13	
145	A magneto-optical study of coupled quantum wells in strained GaInSb/GaSb. <i>Physica B: Condensed Matter</i> , 1993 , 184, 106-110	2.8	13	
144	Electron concentration dependent fractional quantisation in a two dimensional system. <i>Solid State Communications</i> , 1985 , 56, 173-176	1.6	13	
143	Magneto-optical studies of the type-I/type-II crossover and band offset in ZnTe/Zn1-xMnxTe superlattices in magnetic fields up to 45 T. <i>Physical Review B</i> , 1995 , 52, 5269-5274	3.3	12	
142	Temperature dependence of the band overlap in InAs/GaSb structures. <i>Physical Review B</i> , 1995 , 51, 17	′29 ₃ .1₃73	4 12	
141	Interface and layer thickness dependence of the effective mass in superlattices studied by high field cyclotron resonance. <i>Solid-State Electronics</i> , 1996 , 40, 181-184	1.7	12	
140	Valence band spin splitting in strained In0.18Ga0.82As/GaAs quantum wells. <i>Semiconductor Science and Technology</i> , 1991 , 6, 359-364	1.8	12	
139	Intraband and interband magneto-optics of p-type In0.18Ga0.82As/GaAs quantum wells. <i>Physical Review B</i> , 1991 , 43, 14124-14133	3.3	12	
138	Magneto-optical studies of screened excitons in GaAs/AlxGa1-xAs modulation-doped quantum wells. <i>Physical Review B</i> , 1992 , 46, 4047-4052	3.3	12	
137	The influence of alloy disorder on the k.p interaction in (GaIn)(AsP)/InP. <i>Journal of Physics C: Solid State Physics</i> , 1985 , 18, L443-L448		12	

136	High Magnetic Field Phenomena in Carbon Nanotubes. <i>Topics in Applied Physics</i> , 2007 , 393-422	0.5	11
135	MOVPE grown self-assembled Sb-based quantum dots assessed by means of AFM and TEM. <i>IEE Proceedings: Optoelectronics</i> , 2000 , 147, 209-215		11
134	Spin Split Cyclotron Resonance in a 2-D Electron System at Very High Magnetic Fields. <i>Journal of the Physical Society of Japan</i> , 1993 , 62, 1267-1271	1.5	11
133	Cyclotron resonance to 100 mK of a GaAs heterojunction in the ultra-quantum limit. <i>Surface Science</i> , 1994 , 305, 33-41	1.8	11
132	Two-dimensional magnetopolaron coupling to both homopolar and longitudinal optic phonons in the layer compound InSe. <i>Journal of Physics Condensed Matter</i> , 1989 , 1, 7493-7498	1.8	11
131	High magnetic field characterisation of (Hg, Cd)Te surface layers. <i>Journal of Crystal Growth</i> , 1988 , 86, 656-666	1.6	11
130	The cyclotron resonance linewidth in two-dimensional electron accumulation layers in InSe. <i>Journal of Physics C: Solid State Physics</i> , 1983 , 16, 2439-2448		11
129	Measurements of thermoelectric power in two-dimensional systems. Surface Science, 1986 , 170, 298-30	3 1.8	11
128	Noncovalent Binding of Carbon Nanotubes by Porphyrin Oligomers. <i>Angewandte Chemie</i> , 2011 , 123, 2361-2364	3.6	10
127	MAGNETO-PHOTOLUMINESCENCE OF CHIRALITY-CHARACTERIZED SINGLE-WALLED CARBON NANOTUBES. <i>International Journal of Modern Physics B</i> , 2004 , 18, 3509-3512	1.1	10
126	Cyclotron-resonance measurements on p-type strained-layer Si1-xGex/Si heterostructures. <i>Physical Review B</i> , 1995 , 51, 13499-13502	3.3	10
125	Interband magneto-optical studies of resonant polaron coupling in CdTe/Cd1-xMnxTe quantum wells. <i>Physical Review B</i> , 1994 , 50, 7596-7601	3.3	10
124	Hole-state reversal and the role of residual strain in (In,Ga)As-GaAs superlattices. <i>Physical Review B</i> , 1991 , 43, 12393-12400	3.3	10
123	Optimization of the growth by MOVPE of strained GaSb/InAs double heterojunctions and superlattices on [111] GaAs substrates. <i>Journal of Crystal Growth</i> , 1992 , 124, 395-400	1.6	10
122	Optically detected cyclotron resonance of GaAs quantum wells. <i>Physica B: Condensed Matter</i> , 1993 , 184, 159-163	2.8	10
121	Two-Dimensional Excitonic Photoluminescence in Graphene on a Cu Surface. ACS Nano, 2017, 11, 3207-	3261. 7	9
120	Engineering nanostructures by binding single molecules to single-walled carbon nanotubes. <i>ACS Nano</i> , 2014 , 8, 12748-54	16.7	9
119	Mass enhancement and electronfiole coupling in InAs/GaSb bilayers studied by cyclotron resonance. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 12, 289-292	3	9

118	Excitons with large binding energies in MgS/ZnSe/MgS and ZnMgS/ZnS/ZnMgS quantum wells. Journal of Physics Condensed Matter, 2001 , 13, 2317-2329	1.8	9
117	Magnetotransport investigations and modelling of the Hg1-xCdxTe-anodic oxide accumulation system. <i>Semiconductor Science and Technology</i> , 1992 , 7, 810-817	1.8	9
116	Bound state cyclotron resonance in modulation doped GaAs-AlxGa1NAs quantum wells. <i>Surface Science</i> , 1990 , 229, 488-492	1.8	9
115	Transitions to confined states of the split-off band in GaAs-(Al,Ga)As multiple-quantum-well heterostructures. <i>Physical Review B</i> , 1987 , 35, 7784-7786	3.3	9
114	Shubnikov-de Haas oscillations in n-channel silicon <100> MOSFETS in magnetic fields up to 35 T. <i>Solid State Communications</i> , 1979 , 31, 437-441	1.6	9
113	A study of the energy loss mechanisms for hot electrons in CdTe and CdS from oscillatory photoconductivity and the magnetophonon effect. <i>Journal of Physics C: Solid State Physics</i> , 1980 , 13, 5215-5231		9
112	Quantum transport in semiconductors. <i>Contemporary Physics</i> , 1980 , 21, 501-521	3.3	9
111	An observation by photoconductivity of strain splitting of shallow bulk donors located near to the surface in silicon mos devices. <i>Solid State Communications</i> , 1976 , 20, 77-80	1.6	9
110	Breakdown of the quantum Hall effect in an electronfiole system. <i>Physica B: Condensed Matter</i> , 2001 , 298, 8-12	2.8	8
109	Resonant cavity-enhanced (RCE) photodetector based on Ga(In)Sb for gas-sensing applications. <i>Semiconductor Science and Technology</i> , 1995 , 10, 1017-1021	1.8	8
108	The design of quantum-confined Stark effect modulators for integration with 1.5 mu m lasers. <i>Semiconductor Science and Technology</i> , 1993 , 8, 1173-1178	1.8	8
107	Low-field magnetotransport study of localization in a mesoscopic antidot array. <i>Physical Review B</i> , 1993 , 47, 7354-7360	3.3	8
106	Superlattice modification of the valence-band spin splitting in InxGa1-xAs/GaAs superlattices up to 45 T. <i>Physical Review B</i> , 1993 , 48, 12323-12325	3.3	8
105	Magneto-optical study of Ga1-xInxSb/GaSb strained-quantum-well structures: Miniband formation and valence-band structure. <i>Physical Review B</i> , 1994 , 49, 11210-11221	3.3	8
104	Pulsed and high temperature superconducting magnet technology in Oxford. <i>Physica B: Condensed Matter</i> , 1994 , 201, 546-550	2.8	8
103	Variations of the hole effective masses induced by tensile strain in In1-xGaxAs(P)/InGaAsP heterostructures. <i>Physical Review B</i> , 1994 , 50, 7660-7667	3.3	8
102	Saddle-point excitons and intraband (Gamma - Pi) mixing in strained-layer superlattices. <i>Physical Review B</i> , 1992 , 45, 4266-4273	3.3	8
101	Magneto-optical studies of CdTe:Cd1⊠MnxTe superlattices. <i>Surface Science</i> , 1992 , 267, 354-359	1.8	8

100	Ultra-high magnetic field cyclotron resonance of zero-gap InAs/GaSb superlattices. <i>Physica B: Condensed Matter</i> , 1993 , 184, 168-172	2.8	8
99	Inter-band magneto-absorption in a Ga0.47In0.53As-Al0.48In0.52As quantum well. <i>Solid State Communications</i> , 1986 , 60, 83-86	1.6	8
98	Pressure dependence study of the effective mass in Ga0.47In0.53As/InP heterojunctions. Superlattices and Microstructures, 1988 , 4, 201-206	2.8	8
97	Bulk and transfer doping effects in AlxGa1NAs layers grown on semi-insulating GaAs substrates. <i>Applied Physics Letters</i> , 1984 , 44, 629-631	3.4	8
96	Optical investigations of the states in GaP:Ni. Journal of Physics C: Solid State Physics, 1982, 15, 7355-736	65	8
95	Raman scattering from ion-implanted carriers in n-GaAs. Solid-State Electronics, 1982, 25, 55-58	1.7	8
94	The influence of Landau level broadening on temperature dependent cyclotron resonance linewidths in semiconductors. <i>Solid State Communications</i> , 1982 , 41, 943-946	1.6	8
93	Temperature-dependent cyclotron resonance in a hybridized electronfiole system in InAs/GaSb heterostructures. <i>Semiconductor Science and Technology</i> , 2007 , 22, 194-202	1.8	7
92	Designs for a quantum cascade laser using interband carrier extraction. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 7, 84-88	3	7
91	A far infrared modulated photoluminescence (FIRM-PL) study of cyclotron resonance in a 2D electron gas in GaAs/AlxGa1-xAs heterojunctions. <i>Semiconductor Science and Technology</i> , 1999 , 14, 768-	774	7
90	Thermoelectric power of GaInAs-InP and GaInAs-AlinAs heterojunctions in a magnetic field. <i>Solid State Communications</i> , 1986 , 57, 377-380	1.6	7
89	Millimeter and submillimeter detection using Ga1NAlxAs/GaAs heterostructures. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 1987 , 8, 793-802		7
88	Evidence for shallow bound states in PbTe. <i>Physical Review B</i> , 1983 , 28, 2244-2248	3.3	7
87	Beyond 100 Tesla: Scientific experiments using single-turn coils. <i>Comptes Rendus Physique</i> , 2013 , 14, 115-120	1.4	6
86	The upgrade of the Oxford High Magnetic Field Laboratory. <i>IEEE Transactions on Applied Superconductivity</i> , 2000 , 10, 1552-1555	1.8	6
85	Optical and transport properties of piezoelectric. <i>Physical Review B</i> , 1993 , 48, 17885-17891	3.3	6
84	Unusual Behaviour of the DX-Centre in GaAs:Ge. Japanese Journal of Applied Physics, 1993, 32, 218	1.4	6
83	One dimensional transport and gating of InAs/GaSb structures. <i>Superlattices and Microstructures</i> , 1994 , 15, 41	2.8	6

82	Cyclotron and intersubband resonance studies in [001] and piezoelectric [111] InAs/(Ga,In)Sb superlattices. <i>Solid-State Electronics</i> , 1994 , 37, 1227-1230	1.7	6
81	Superlattice dispersion in InGaAs/InGaAsP multi-quantum wells. <i>Semiconductor Science and Technology</i> , 1992 , 7, 493-497	1.8	6
80	Magneto-optical properties of Mn-based IIIVI semimagnetic superlattices. <i>Physica B: Condensed Matter</i> , 1993 , 191, 156-170	2.8	6
79	Magnetophonon resonance and remote phonon scattering in a GaInAs-AlInAs multi-quantum well. <i>Semiconductor Science and Technology</i> , 1989 , 4, 116-118	1.8	6
78	Shubnikov-de Haas effect of the quasi-two-dimensional electron system in InSb grain boundaries in tilted magnetic fields. <i>Semiconductor Science and Technology</i> , 1989 , 4, 747-753	1.8	6
77	High order fractional quantisation in a two dimensional system. <i>Solid State Communications</i> , 1986 , 60, 183-187	1.6	6
76	The influence of a tilted magnetic field on the fractional quantum hall effect and the exchange enhancement of the spin splitting. <i>Surface Science</i> , 1988 , 196, 242-251	1.8	6
75	Shallow donor spectroscopy in GaxIn1-xAsyP1-y. <i>IEEE Journal of Quantum Electronics</i> , 1981 , 17, 145-149	2	6
74	The magnetophonon effect in p-type PbTe and Pb0.8Sn0.2Te. <i>Journal of Physics C: Solid State Physics</i> , 1977 , 10, L611-L615		6
73	Investigation of InGaAsP-based solar cells for double-junction photovoltaic devices. <i>Thin Solid Films</i> , 2008 , 516, 6744-6747	2.2	5
72	Tunable mid-IR emission using a novel quantum dotquantum well coupled system. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 241-245	3	5
71	Unusual behaviour of the Ge DX centre in GaAs: coexistence of two localized donor states. <i>Journal of Physics Condensed Matter</i> , 1993 , 5, 5001-5008	1.8	5
70	Photoluminescence at high pressures from highly strained MOVPE grown GaAs/GaSb/GaAs heterostructures. <i>Semiconductor Science and Technology</i> , 1991 , 6, 527-534	1.8	5
69	Spectroscopic studies of miniband structure and band mixing in superlattices. <i>Superlattices and Microstructures</i> , 1990 , 8, 151-154	2.8	5
68	Eland X-miniband structure in GaAs?AlAs short period superlattices. Surface Science, 1990, 228, 62-64	1.8	5
67	High magnetic field characterisation of MOCVD heterostructures and superlattices. <i>Journal of Crystal Growth</i> , 1984 , 68, 356-369	1.6	5
66	Cyclotron resonance linewidth in n-InSb at low temperatures. <i>Journal of Physics C: Solid State Physics</i> , 1985 , 18, 1495-1501		5
65	Tilted field studies of Hg0.8Cd0.2Te accumulation layers. Surface Science, 1986, 170, 409-415	1.8	5

64	An observation of central cell structure in magneto-impurity resonances in n-type InP. <i>Journal of Physics C: Solid State Physics</i> , 1978 , 11, L783-L787		5
63	Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes. <i>Scientific Reports</i> , 2016 , 6, 37167	4.9	4
62	Spin polarization of 2D electrons in the quantum Hall ferromagnet: evidence for a partially polarized state around filling factor one. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 12, 12-15	3	4
61	Quantum Hall and insulating states of a 2-D electronfiole system. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 20, 160-171	3	4
60	Magneto-photoluminescence of AlGaN/GaN quantum wells. <i>Journal of Crystal Growth</i> , 2001 , 230, 487-4	91 16	4
59	Selective area epitaxy of InGaAs/InGaAsP quantum wells studied by magnetotransport. Semiconductor Science and Technology, 1996 , 11, 735-740	1.8	4
58	Magneto-optical studies of compressively strained GaInPAlGaInP multiple quantum wells. <i>Solid-State Electronics</i> , 1996 , 40, 597-600	1.7	4
57	The control and evaluation of blue shift in GaInAs/GaInAsP multiple quantum well structures for integrated lasers and Stark-effect modulators. <i>Semiconductor Science and Technology</i> , 1993 , 8, 1156-110	6 5 .8	4
56	Strain and minibands in InGaAs?GaAs superlattices. Superlattices and Microstructures, 1991, 9, 521-525	2.8	4
55	A transition from quantum well to superlattice behaviour in GaAs?AlAs short period superlattices. Superlattices and Microstructures, 1989, 6, 51-54	2.8	4
54	Impurity-associated magnetophonon resonance in n-type silicon. <i>Journal of Physics C: Solid State Physics</i> , 1979 , 12, 5121-5143		4
53	Chemical Interaction at the MoO/CHNHPbICl Interface. <i>ACS Applied Materials & Distributed & Distribute</i>	9.5	4
52	Photoconductivity studies of InAsP/InP heterostructures in applied magnetic and electric fields. <i>Semiconductor Science and Technology</i> , 1996 , 11, 34-38	1.8	3
51	Magneto-photoluminescence studies of a novel quantum dotquantum well coupled system. <i>Physica Status Solidi (B): Basic Research</i> , 2003 , 238, 281-284	1.3	3
50	Cyclotron resonance in an asymmetric electronflole InAs/GaSb DHET structure. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 6, 660-663	3	3
49	Intersubband transitions in InAs/GaSb superlattices in a parallel magnetic field. <i>Physica E:</i> Low-Dimensional Systems and Nanostructures, 2000 , 7, 93-96	3	3
48	Skyrmions and composite fermions in the limit of vanishing Zeeman energy. <i>Journal of Physics Condensed Matter</i> , 1998 , 10, 11327-11335	1.8	3
47	Magnetotransport investigations at InSb and Hg1-xCdxTe bicrystals in tilted magnetic fields. <i>Semiconductor Science and Technology</i> , 1993 , 8, S168-S171	1.8	3

46	Cyclotron resonance of the quasi-two-dimensional electron gas at Hg1-xCdxTe grain boundaries. <i>Semiconductor Science and Technology</i> , 1992 , 7, 511-515	1.8	3
45	Magnetotransport investigations of the quasi-two-dimensional electron system in Hg1-xCdxTe bicrystals in tilted magnetic fields. <i>Semiconductor Science and Technology</i> , 1992 , 7, 505-510	1.8	3
44	Resonant magnetopolaron coupling to both polar and neutral optical phonons in the layer compound InSe. <i>Surface Science</i> , 1992 , 263, 654-658	1.8	3
43	Cyclotron resonance measurements of the hole mass in [0 0 1] and [1 1 1] InxGa1\(\text{INS}\) Sb/GaSb quantum wells. <i>Physica B: Condensed Matter</i> , 1993 , 184, 154-158	2.8	3
42	High-field magneto-resistance in GaAs-GaAlAs heterojunctions. <i>Physica B: Condensed Matter</i> , 1993 , 184, 197-201	2.8	3
41	Activated DC transport and infrared absorption in epitaxial n-InP. <i>Journal of Physics C: Solid State Physics</i> , 1985 , 18, 4021-4035		3
40	Size resonant scattering from a hard cylindrical potential observed in the magnetoresistance of InSb. <i>Journal of Physics C: Solid State Physics</i> , 1979 , 12, 2829-2837		3
39	Carbon Nanotubes for Quantum Dot Photovoltaics with Enhanced Light Management and Charge Transport. <i>ACS Photonics</i> , 2018 , 5, 4854-4863	6.3	3
38	Reduced Stark shift in three-dimensionally confined GaN/AlGaN asymmetric multi-quantum disks. <i>Optical Materials Express</i> , 2015 , 5, 849	2.6	2
37	Multi-band magnetotransport in exfoliated thin films of Cu BiSe. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 155302	1.8	2
36	Optical studies of localized excitons in symmetric coupled quantum wells. <i>Superlattices and Microstructures</i> , 1997 , 21, 597-600	2.8	2
35	Mid-infrared luminescence from coupled quantum dots and wells. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 21, 341-344	3	2
34	Edge effects in an insulating state of an electronfiole system in magnetic field. <i>Physica B: Condensed Matter</i> , 2001 , 298, 28-32	2.8	2
33	Magnetic-field-induced suppression of tunnelling into a two-dimensional electron system. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 5561-5574	1.8	2
32	Direct observation of the semimetal to semiconductor transition in crossed band gap superlattices at magnetic fields of up to 150 T. <i>Solid-State Electronics</i> , 1994 , 37, 1027-1030	1.7	2
31	Valence band spin of semiconductor superlattices. <i>Surface Science</i> , 1992 , 267, 365-369	1.8	2
30	Magnetic-field- and temperature-dependent exciton delocalisation in a CdTe/Cd1⊠MnxTe superlattice. <i>Physica B: Condensed Matter</i> , 1993 , 184, 455-459	2.8	2
29	2D cyclotron resonance and magneto-polaron coupling to homopolar and lo phonons in the layered semiconductor InSe. <i>Surface Science</i> , 1990 , 229, 496-500	1.8	2

28	Tilted field cyclotron resonance of accumulation layer electrons on n?Hg0.8Cd0.2Te. <i>Solid State Communications</i> , 1986 , 59, 819-823	1.6	2
27	Inter-band magneto-absorption in a Ga0.3In0.7As-InP strained layer superlattice. <i>Semiconductor Science and Technology</i> , 1986 , 1, 350-353	1.8	2
26	A study of n-type GaxIn1-xAsyP1-y-InP quantum wells. <i>Semiconductor Science and Technology</i> , 1986 , 1, 3-6	1.8	2
25	Double source photoconductivity of InP:Fe. <i>Physica Status Solidi A</i> , 1985 , 88, 347-353		2
24	A study of the Cr and Fe deep acceptors in InP by the nuclear transmutation back doping technique. Journal Physics D: Applied Physics, 1985, 18, 259-267	3	2
23	The band structure of Pb1N Ge x Te above and below the structural phase transition. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 1980 , 1, 485-499		2
22	Two-dimensional conductivity in the contact regions of silicon MOSFETs. <i>Journal of Physics C: Solid State Physics</i> , 1980 , 13, L619-L622		2
21	Filamentary High-Resolution Electrical Probes for Nanoengineering. <i>Nano Letters</i> , 2020 , 20, 1067-1073	11.5	2
20	BAND STRUCTURE AND ELECTRON VELOCITY MEASUREMENT IN CARBON NANOTUBES AND GRAPHENE. International Journal of Modern Physics B, 2009 , 23, 2655-2664	1.1	1
19	Current-driven breakdown of the quantized Hall states of a broken-gap 2D electronBole system. <i>Semiconductor Science and Technology</i> , 2006 , 21, 1758-1763	1.8	1
18	Magnetoresistance studies of strongly coupled superlattices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 22, 316-319	3	1
17	Far infrared modulated photoluminescence in InSb quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 22, 598-602	3	1
16	The quantum Hall effect in an InAs/GaSb based electronBole system and its current-driven breakdown. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 12, 161-164	3	1
15	InGaAs/GaAs quantum wells and quantum dots on (111)B orientation. <i>Solid State Communications</i> , 2001 , 117, 649-654	1.6	1
14	The effect of the cross-gap alignment on magneto-transport in short period InAs/GaSb superlattices. <i>Physica B: Condensed Matter</i> , 2001 , 298, 344-347	2.8	1
13	A digital quantum Hall effect. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 6, 836-839	3	1
12	Atomic Self-ordering in Heteroepitaxially Grown Semiconductor Quantum Dots due to Relaxation of External Lattice Mismatch Strains. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 696, 1		1
11	Magneto-optical studies of the type I/type II crossover and band offset in superlattices in magnetic fields up to 45 T. <i>Solid-State Electronics</i> , 1996 , 40, 69-74	1.7	1

LIST OF PUBLICATIONS

10	Disappearance of magnetophonon resonance at high magnetic fields in GaAs/GaAlAs heterojunctions. <i>Surface Science</i> , 1994 , 305, 327-332	1.8	1
9	Magnetotransport studies of GaSb/InAs crossed gap heterostructures in high magnetic fields. <i>Physica B: Condensed Matter</i> , 1993 , 184, 202-205	2.8	1
8	Magneto-optics and strain effects in GaInAs?AlInAs and GaInAs?InP quantum wells. <i>Superlattices and Microstructures</i> , 1987 , 3, 69-74	2.8	1
7	A time-dependent anomalous threshold in silicon MOS devices fabricated on high-resistivity substrates. <i>Journal Physics D: Applied Physics</i> , 1976 , 9, L109-L113	3	1
6	Ultrafast Charge Separation at a Single-walled Carbon Nanotube Polymer Interface. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1286, 7		
5	Mid-infrared electroluminescence from coupled quantum dots and wells. <i>Journal of Applied Physics</i> , 2004 , 96, 2725-2730	2.5	
4	Anomalous g-factors and diamagnetic shifts of biexcitons in ZnS quantum wells. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 12, 507-511	3	
3	Magnetoresistance of vertical transport in InAs/GaSb superlattices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 736-740	3	
2	Atomic Self-Ordering in Heteroepitaxially Grown Semiconductor Quantum Dots Due to Relaxation of External Lattice Mismatch Strains. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 707, 881		
1	Independence of optical absorption on Auger ionization in single-walled carbon nanotubes revealed by ultrafast ell photodoping. <i>New Journal of Physics</i> , 2016 , 18, 023051	2.9	