Steven P. Nolan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1928101/steven-p-nolan-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

622 205 51,132 112 h-index g-index citations papers 8.08 829 6.4 54,957 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
622	The effect of cocoa alkalization on the non-volatile and volatile mood-enhancing compounds <i>Food Chemistry</i> , 2022 , 381, 132082	8.5	3
621	Unveiling the complexity of the dual gold(I) catalyzed intermolecular hydroamination of alkynes leading to vinylazoles. <i>Molecular Catalysis</i> , 2022 , 518, 112090	3.3	O
620	Silver-catalyzed site-selective C(sp)-H benzylation of ethers with N-triftosylhydrazones <i>Nature Communications</i> , 2022 , 13, 1674	17.4	1
619	Reaction Parameterization as a Tool for Development in Organometallic Catalysis 2021,		
618	Gold N-Heterocyclic Carbene Catalysts for the Hydrofluorination of Alkynes Using Hydrofluoric Acid: Reaction Scope, Mechanistic Studies and the Tracking of Elusive Intermediates. <i>Chemistry - A European Journal</i> , 2021 ,	4.8	2
617	Continuous Flow Synthesis of Metal-NHC Complexes*. Chemistry - A European Journal, 2021, 27, 5653-56	6 . 5.8	15
616	Synthesis of Gold(I)-Trifluoromethyl Complexes and their Role in Generating Spectroscopic Evidence for a Gold(I)-Difluorocarbene Species. <i>Chemistry - A European Journal</i> , 2021 , 27, 8461-8467	4.8	2
615	A critical review of palladium organometallic anticancer agents. <i>Cell Reports Physical Science</i> , 2021 , 2, 100446	6.1	16
614	Impact of alkalization conditions on the phytochemical content of cocoa powder and the aroma of cocoa drinks. LWT - Food Science and Technology, 2021, 145, 111181	5.4	2
613	Simple Synthetic Routes to Carbene-M-Amido (M=Cu, Ag, Au) Complexes for Luminescence and Photocatalysis Applications. <i>Chemistry - A European Journal</i> , 2021 , 27, 11904-11911	4.8	15
612	Fluoroalkyl N-Triftosylhydrazones as Easily Decomposable Diazo Surrogates for Asymmetric [2 + 1] Cycloaddition: Synthesis of Chiral Fluoroalkyl Cyclopropenes and Cyclopropanes. <i>ACS Catalysis</i> , 2021 , 11, 8527-8537	13.1	7
611	Chelation enforcing a dual gold configuration in the catalytic hydroxyphenoxylation of alkynes. <i>Applied Organometallic Chemistry</i> , 2021 , 35, e6362	3.1	3
610	Optimizing Catalyst and Reaction Conditions in Gold(I) Catalysis-Ligand Development. <i>Chemical Reviews</i> , 2021 , 121, 8559-8612	68.1	20
609	Protocol for Palladium/N-Heterocyclic Carbene-Catalyzed SuzukiMiyaura Cross-Coupling of Amides by NII(O) Activation. <i>Synthesis</i> , 2021 , 53, 682-687	2.9	2
608	The mechanism of carboxylative cyclization of propargylamine by N-heterocyclic carbene complexes of Au(I). <i>Journal of Organometallic Chemistry</i> , 2021 , 934, 121583	2.3	1
607	Synthesis and catalytic activity of palladium complexes bearing -heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) ligands. <i>Dalton Transactions</i> , 2021 , 50, 9491-9499	4.3	3
606	A simple synthesis of [RuCl(NHC)(p-cymene)] complexes and their use in olefin oxidation catalysis. <i>Dalton Transactions</i> , 2021 , 50, 3959-3965	4.3	7

(2021-2021)

605	Simple synthesis of [Ru(CO)(NHC)(-cymene)] complexes and their use in transfer hydrogenation catalysis. <i>Dalton Transactions</i> , 2021 , 50, 13012-13019	4.3	2
604	Recent advances in the synthesis and derivatization of N-heterocyclic carbene metal complexes. <i>Dalton Transactions</i> , 2021 , 50, 12058-12068	4.3	4
603	Suzuki-Miyaura Cross-Coupling of Esters by Selective O-C(O) Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(ECl)Cl] Precatalysts: Catalyst Evaluation and Mechanism. <i>Catalysis Science and Technology</i> , 2021 , 11, 3189-3197	5.5	8
602	Straightforward synthetic route to gold(I)-thiolato glycoconjugate complexes bearing NHC ligands (NHC = N-heterocyclic carbene) and their promising anticancer activity. <i>New Journal of Chemistry</i> , 2021 , 45, 9995-10001	3.6	3
601	Mechanistic Aspects of the Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction. <i>Chemistry - A European Journal</i> , 2021 , 27, 13481-13493	4.8	18
600	Continuous Flow Synthesis of [Au(NHC)(Aryl)] (NHC=N-Heterocyclic Carbene) Complexes. <i>Chemistry - A European Journal</i> , 2021 , 27, 13342-13345	4.8	1
599	A Simple Synthetic Route to [Rh(acac)(CO)(NHC)] Complexes: Ligand Property Diagnostic Tools and Precatalysts. <i>European Journal of Inorganic Chemistry</i> , 2021 , 2021, 3506-3511	2.3	0
598	Silver N-heterocyclic carbenes: emerging powerful catalysts. <i>Trends in Chemistry</i> , 2021 , 3, 674-685	14.8	8
597	In vitro and in cellulo anti-diabetic activity of Aul- and AullI-isothiourea complexes. <i>Inorganic Chemistry Communication</i> , 2021 , 130, 108666	3.1	
596	Au???H-C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21014-21024	16.4	17
595	Platinum-Catalyzed Alkene Hydrosilylation: Solvent-Free Process Development from Batch to a Membrane-Integrated Continuous Process. <i>ChemSusChem</i> , 2021 , 14, 3810-3814	8.3	0
594	Au???HII Hydrogen Bonds as Design Principle in Gold(I) Catalysis. <i>Angewandte Chemie</i> , 2021 , 133, 21182	2-3.619	24
593	Frontispiece: Mechanistic Aspects of the Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction. <i>Chemistry - A European Journal</i> , 2021 , 27,	4.8	2
592	Integrating membrane separation with gold-catalyzed carboxylative cyclization of propargylamine and catalyst recovery via organic solvent nanofiltration. <i>Journal of Chemical Technology and Biotechnology</i> , 2021 , 96, 3371	3.5	
591	Synthesis of N-heterocyclic carbene gold(I) complexes. <i>Nature Protocols</i> , 2021 , 16, 1476-1493	18.8	22
590	The "weak base route" leading to transition metal-N-heterocyclic carbene complexes. <i>Chemical Communications</i> , 2021 , 57, 3836-3856	5.8	23
589	N-Heterocyclic carbene complexes enabling the \Box -arylation of carbonyl compounds. <i>Chemical Communications</i> , 2021 , 57, 4354-4375	5.8	10
588	Conversion of Pd(I) off-cycle species into highly efficient cross-coupling catalysts. <i>Dalton Transactions</i> , 2021 , 50, 5420-5427	4.3	3

587	. IEEE Transactions on Transportation Electrification, 2020 , 6, 1819-1829	7.6	1
586	Improving process efficiency of gold-catalyzed hydration of alkynes: merging catalysis with membrane separation. <i>Green Chemistry</i> , 2020 , 22, 2598-2604	10	11
585	Using sodium acetate for the synthesis of [Au(NHC)X] complexes. <i>Dalton Transactions</i> , 2020 , 49, 9694-9	7409	14
584	Simple Synthetic Routes to N-Heterocyclic Carbene Gold(I)-Aryl Complexes: Expanded Scope and Reactivity. <i>Chemistry - A European Journal</i> , 2020 , 26, 5541-5551	4.8	25
583	N-Heterocyclic Carbene Complexes in C-H Activation Reactions. <i>Chemical Reviews</i> , 2020 , 120, 1981-2048	368.1	211
582	BuchwaldHartwig cross-coupling of amides (transamidation) by selective NII(O) cleavage mediated by air- and moisture-stable [Pd(NHC)(allyl)Cl] precatalysts: catalyst evaluation and mechanism. <i>Catalysis Science and Technology</i> , 2020 , 10, 710-716	5.5	35
581	A general protocol for the synthesis of Pt-NHC (NHC = N-heterocyclic carbene) hydrosilylation catalysts. <i>Dalton Transactions</i> , 2020 , 49, 14673-14679	4.3	10
580	Synthesis, in silico and in vitro Evaluation of Novel Oxazolopyrimidines as Promising Anticancer Agents. <i>Helvetica Chimica Acta</i> , 2020 , 103, e2000169	2	2
579	Synthesis, reactivity and catalytic activity of Au-PAd complexes. <i>Dalton Transactions</i> , 2020 , 49, 13872-13	3 2 47 9	6
578	Design Concepts for N-Heterocyclic Carbene Ligands. <i>Trends in Chemistry</i> , 2020 , 2, 1096-1113	14.8	11
577	Straightforward access to chalcogenoureas derived from N-heterocyclic carbenes and their coordination chemistry. <i>Dalton Transactions</i> , 2020 , 49, 12068-12081	4.3	15
576	[Pd(NHC)(ECl)Cl]: Versatile and Highly Reactive Complexes for Cross-Coupling Reactions that Avoid Formation of Inactive Pd(I) Off-Cycle Products. <i>IScience</i> , 2020 , 23, 101377	6.1	24
575	Synthetic Routes to Late Transition Metal MHC Complexes. <i>Trends in Chemistry</i> , 2020 , 2, 721-736	14.8	59
574	Dinuclear Gold(I) Complexes Bearing Alkyl-Bridged Bis(N-heterocyclic carbene) Ligands as Catalysts for Carboxylative Cyclization of Propargylamine: Synthesis, Structure, and Kinetic and Mechanistic Comparison to the Mononuclear Complex [Au(IPr)Cl]. <i>Organometallics</i> , 2020 , 39, 2907-2916	3.8	11
573	The anticancer activity of an air-stable Pd(I)-NHC (NHC = N-heterocyclic carbene) dimer. <i>Chemical Communications</i> , 2020 , 56, 12238-12241	5.8	14
572	Dinuclear gold(i) complexes: from bonding to applications. <i>Chemical Society Reviews</i> , 2020 , 49, 7044-710	0 9 8.5	33
571	Understanding existing and designing novel synthetic routes to Pd-PEPPSI-NHC and Pd-PEPPSI-PR pre-catalysts. <i>Chemical Communications</i> , 2020 , 56, 5953-5956	5.8	18
570	A Mechanistically and Operationally Simple Route to Metal-N-Heterocyclic Carbene (NHC) Complexes. <i>Chemistry - A European Journal</i> , 2020 , 26, 4515-4519	4.8	31

569	MizorokiHeck Cross-Coupling of Acrylate Derivatives with Aryl Halides Catalyzed by Palladate Pre-Catalysts. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 4695-4699	2.3	8
568	Quantifying electronic similarities between NHC-gold(i) complexes and their isolobal imidazolium precursors. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 15615-15622	3.6	7
567	Regression analysis of properties of [Au(IPr)(CHR)] complexes. <i>Dalton Transactions</i> , 2019 , 48, 7693-770	34.3	4
566	Synthesis and reactivity of [Au(NHC)(Bpin)] complexes. <i>Chemical Communications</i> , 2019 , 55, 6799-6802	5.8	17
565	[Pd(NHC)(acac)Cl]: Well-Defined, Air-Stable, and Readily Available Precatalysts for Suzuki and Buchwald-Hartwig Cross-coupling (Transamidation) of Amides and Esters by N-C/O-C Activation. <i>Organic Letters</i> , 2019 , 21, 3304-3309	6.2	56
564	Gold(i) catalysed regio- and stereoselective intermolecular hydroamination of internal alkynes: towards functionalised azoles. <i>Organic and Biomolecular Chemistry</i> , 2019 , 17, 3805-3811	3.9	14
563	Palladate Precatalysts for the Formation of CN and CN Bonds. Organometallics, 2019, 38, 2812-2817	3.8	15
562	2-Methyltetrahydrofuran (2-MeTHF): A Green Solvent for PdNHC-Catalyzed Amide and Ester Suzuki-Miyaura Cross-Coupling by NII/OII Cleavage. <i>Advanced Synthesis and Catalysis</i> , 2019 , 361, 5654-5	5 6 56	24
561	Investigating the Biological Activity of Imidazolium Aurate Salts. ChemistrySelect, 2019, 4, 11061-11065	1.8	2
560	A simple 1H NMR method for determining the Edonor properties of N-heterocyclic carbenes. <i>Tetrahedron Letters</i> , 2019 , 60, 378-381	2	42
559	Synthesis of Di-Substituted Alkynes via Palladium-Catalyzed Decarboxylative Coupling and C-H Activation. <i>ChemistrySelect</i> , 2019 , 4, 5-9	1.8	9
558	Chiral Au - and Au -Isothiourea Complexes: Synthesis, Characterization and Application. <i>Chemistry - A European Journal</i> , 2019 , 25, 1064-1075	4.8	8
557	Mechanistic Study of SuzukiMiyaura Cross-Coupling Reactions of Amides Mediated by [Pd(NHC)(allyl)Cl] Precatalysts. <i>ChemCatChem</i> , 2018 , 10, 3096-3106	5.2	58
556	The effect of shear flow on microreactor clogging. <i>Chemical Engineering Journal</i> , 2018 , 341, 639-647	14.7	16
555	Catalytic effectiveness of azobisisobutyronitrile/[SiMes)Ru(PPH3)(Ind)Cl2 initiating system in the polymerization of methyl methacrylate and other vinylic monomers. <i>Arabian Journal of Chemistry</i> , 2018 , 11, 1017-1031	5.9	
554	Insights into the Catalytic Activity of [Pd(NHC)(cin)Cl] (NHC=IPr, IPrCl, IPrBr) Complexes in the SuzukiMiyaura Reaction. <i>ChemCatChem</i> , 2018 , 10, 601-611	5.2	14
553	Synthesis, Characterization and Catalytic Activity of NHC Gold(I) Polyoxometalate Complexes. <i>Chemistry - A European Journal</i> , 2018 , 24, 12630-12637	4.8	10
552	Metallate Complexes of the Late Transition Metals: Organometallic Chemistry and Catalysis. Advances in Organometallic Chemistry, 2018, 283-327	3.8	8

551	Ligand-Directed Reactivity in Dioxygen and Water Binding to cis-[Pd(NHC)(EO)]. <i>Journal of the American Chemical Society</i> , 2018 , 140, 264-276	16.4	1
550	PMO-Immobilized Au -NHC Complexes: Heterogeneous Catalysts for Sustainable Processes. <i>ChemPhysChem</i> , 2018 , 19, 430-436	3.2	7
549	In vitro Anti-atherogenic Properties of N-Heterocyclic Carbene Aurate(I) Compounds. <i>ChemMedChem</i> , 2018 , 13, 2484-2487	3.7	11
548	The activity of indenylidene derivatives in olefin metathesis catalysts. <i>Beilstein Journal of Organic Chemistry</i> , 2018 , 14, 2956-2963	2.5	8
547	Well-Defined Palladium(II)-NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective N-C/O-C Cleavage. <i>Accounts of Chemical Research</i> , 2018 , 51, 2589-2599	24.3	226
546	Towards environmentally friendlier SuzukiMiyaura reactions with precursors of Pd-NHC (NHC = N-heterocyclic carbene) complexes. <i>Green Chemistry</i> , 2018 , 20, 3246-3252	10	27
545	POM@IL-MOFs Inclusion of POMs in ionic liquid modified MOFs to produce recyclable oxidation catalysts. <i>Catalysis Science and Technology</i> , 2017 , 7, 1478-1487	5.5	42
544	Quantifying and understanding the steric properties of N-heterocyclic carbenes. <i>Chemical Communications</i> , 2017 , 53, 2650-2660	5.8	192
543	Mild, Aqueous ⊞-Arylation of Ketones: Towards New Diversification Tools for Halogenated Metabolites and Drug Molecules. <i>Chemistry - A European Journal</i> , 2017 , 23, 3832-3836	4.8	18
542	[1,3-Bis[2,6-bis(1-methylethyl)phenyl]-1,3-dihydro-2H-imidazol-2-ylidene]hydroxy Gold 2017 , 1-5		1
541	A simple synthetic entryway into palladium cross-coupling catalysis. <i>Chemical Communications</i> , 2017 , 53, 7990-7993	5.8	43
540	N-heterocyclic carbene complexes of palladium in oxygen atom transfer reactions involving the making and breaking of N-O bonds. <i>Inorganica Chimica Acta</i> , 2017 , 468, 285-293	2.7	1
539	Mechanism of the Suzuki M iyaura Cross-Coupling Reaction Mediated by [Pd(NHC)(allyl)Cl] Precatalysts. <i>Organometallics</i> , 2017 , 36, 2088-2095	3.8	53
538	Expedient Syntheses of Neutral and Cationic Au(I)NHC Complexes. <i>Organometallics</i> , 2017 , 36, 3645-365	53 3.8	13
537	Mechanism of the Catalytic Carboxylation of Alkylboronates with CO Using Ni-NHC Complexes: A DFT Study. <i>Chemistry - A European Journal</i> , 2017 , 23, 14954-14961	4.8	10
536	Ruthenium-catalysed decomposition of formic acid: Fuel cell and catalytic applications. <i>Molecular Catalysis</i> , 2017 , 440, 184-189	3.3	19
535	Inner-Sphere versus Outer-Sphere Coordination of BF4IIn a NHC-Gold(I) Complex. <i>Organometallics</i> , 2017 , 36, 2861-2869	3.8	19
534	In vitro Biological Activities of Gold(I) and Gold(III) Bis(N-Heterocyclic Carbene) Complexes. <i>ChemistrySelect</i> , 2017 , 2, 5316-5320	1.8	8

533	Optimized network planning of mini-grids for the rural electrification of developing countries 2017,		1
532	General Method for the Suzuki-Miyaura Cross-Coupling of Primary Amide-Derived Electrophiles Enabled by [Pd(NHC)(cin)Cl] at Room Temperature. <i>Organic Letters</i> , 2017 , 19, 6510-6513	6.2	52
531	New Ligands 2017 , 809-950		O
530	Hydroxide complexes of the late transition metals: Organometallic chemistry and catalysis. <i>Coordination Chemistry Reviews</i> , 2017 , 353, 278-294	23.2	29
529	A new initiating system based on [(SiMes)Ru(PPh)(Ind)Cl] combined with azo-bis-isobutyronitrile in the polymerization and copolymerization of styrene and methyl methacrylate. <i>Designed Monomers and Polymers</i> , 2017 , 20, 167-176	3.1	3
528	Gold- N-Heterocyclic Carbene Complexes of Mineral Acids. <i>ChemCatChem</i> , 2017 , 9, 117-120	5.2	17
527	Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes. <i>ChemCatChem</i> , 2016 , 8, 3381-3388	5.2	21
526	A Switchable Gold Catalyst by Encapsulation in a Self-Assembled Cage. <i>Chemistry - A European Journal</i> , 2016 , 22, 14836-14839	4.8	54
525	Gold(I)-Catalysed Cyclisation of Alkynoic Acids: Towards an Efficient and Eco-Friendly Synthesis of El Eland ?-Lactones. <i>Advanced Synthesis and Catalysis</i> , 2016 , 358, 3857-3862	5.6	28
524	Sonication-Assisted Synthesis of (E)-2-Methyl-but-2-enyl Nucleoside Phosphonate Prodrugs. <i>ChemistrySelect</i> , 2016 , 1, 3108-3113	1.8	7
523	Synthesis, characterization and catalytic activity of stable [(NHC)H][ZnXY2] (NHC =N-Heterocyclic carbene, X, Y = Cl, Br) species. <i>Journal of Molecular Catalysis A</i> , 2016 , 423, 85-91		7
522	1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene 2016 , 1-3		
521	How easy is CO2 fixation by MII bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?. <i>Organic Chemistry Frontiers</i> , 2016 , 3, 19-23	5.2	21
520	Recyclable NHC Catalyst for the Development of a Generalized Approach to Continuous Buchwald Hartwig Reaction and Workup. <i>Organic Process Research and Development</i> , 2016 , 20, 551-557	3.9	33
519	Transition metal bifluorides. <i>Coordination Chemistry Reviews</i> , 2016 , 307, 65-80	23.2	11
518	Scope and limitations of the dual-gold-catalysed hydrophenoxylation of alkynes. <i>Beilstein Journal of Organic Chemistry</i> , 2016 , 12, 172-8	2.5	15
517	On the Mechanism of the Digold(I)-Hydroxide-Catalysed Hydrophenoxylation of Alkynes. <i>Chemistry - A European Journal</i> , 2016 , 22, 1125-32	4.8	41
516	In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes. <i>Chemistry - A European Journal</i> , 2016 , 22, 6617-23	4.8	9

 $\,$ 1. Grignard Reagents and Palladium **2016**, 1-60

514	Catalytic <code>H-Arylation</code> of Imines Leading to N-Unprotected Indoles and Azaindoles. <i>ACS Catalysis</i> , 2016 , 6, 2930-2938	13.1	23
513	Synthesis, Structure and Catalytic Activity of NHC-Ag(I) Carboxylate Complexes. <i>Chemistry - A European Journal</i> , 2016 , 22, 13320-7	4.8	22
512	Synthesis of Aul- and AulII-Bis(NHC) Complexes: Ligand Influence on Oxidative Addition to Aul Species. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 4111-4122	2.3	25
511	Mechanism of the Transmetalation of Organosilanes to Gold. ChemistryOpen, 2016, 5, 60-4	2.3	9
510	Gold-NHC complexes as potent bioactive compounds. <i>ChemistrySelect</i> , 2016 , 1, 76-80	1.8	20
509	General and mild Ni(0)-catalyzed ⊞-arylation of ketones using aryl chlorides. <i>Chemistry - A European Journal</i> , 2015 , 21, 3906-9	4.8	31
508	What can NMR spectroscopy of selenoureas and phosphinidenes teach us about the Eaccepting abilities of -heterocyclic carbenes?. <i>Chemical Science</i> , 2015 , 6, 1895-1904	9.4	201
507	A microfluidic approach for flexible and efficient operation of a cross-coupling reactive flow. <i>RSC Advances</i> , 2015 , 5, 63786-63792	3.7	15
506	Synthesis of (diarylmethyl)amines using Ni-catalyzed arylation of C(sp)-H bonds. <i>Chemical Science</i> , 2015 , 6, 4973-4977	9.4	45
505	Gold-acetonyl complexes: from side-products to valuable synthons. <i>Chemistry - A European Journal</i> , 2015 , 21, 5403-12	4.8	41
504	Gold(I)-catalysed dehydrative formation of ethers from benzylic alcohols and phenols. <i>Green Chemistry</i> , 2015 , 17, 3819-3825	10	22
503	Synthesis of an Intermediate of Nafoxidine via Nickel-Catalyzed Ketone Arylation. <i>Synthesis</i> , 2015 , 47, 2032-2037	2.9	6
502	Highly Efficient Gold(I)-Catalyzed Regio- and Stereoselective Hydrocarboxylation of Internal Alkynes. <i>ACS Catalysis</i> , 2015 , 5, 6918-6921	13.1	58
501	Chiral Carbophilic Gold Lewis Acid Complexes in Enantioselective Catalysis. <i>Topics in Organometallic Chemistry</i> , 2015 , 51-90	0.6	9
500	Synthesis and Characterization of Gold(I) Complexes of Dibenzotropylidene-Functionalized NHC Ligands (Trop-NHCs). <i>Organometallics</i> , 2015 , 34, 263-274	3.8	15
499	Hydrofluorination of Alkynes Catalysed by Gold Bifluorides. <i>ChemCatChem</i> , 2015 , 7, 240-244	5.2	66
498	Synthesis and characterisation of Au(I)-(ITent) complexes. <i>Journal of Organometallic Chemistry</i> , 2015 , 775, 152-154	2.3	15

(2014-2015)

497	Fluoride, bifluoride and trifluoromethyl complexes of iridium(I) and rhodium(I). <i>Chemical Communications</i> , 2015 , 51, 62-5	5.8	15
496	Mechanism of CO2 Fixation by Irl⊠ Bonds (X = OH, OR, N, C). <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 4653-4657	2.3	17
495	Gold(I)-Assisted ⊞-Allylation of Enals and Enones with Alcohols. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14885-9	16.4	24
494	Gold(I)-Assisted ⊞-Allylation of Enals and Enones with Alcohols. <i>Angewandte Chemie</i> , 2015 , 127, 15098-7	15:1602	5
493	Arylation of Amines in Alkane Solvents by using Well-Defined Palladium M-Heterocyclic Carbene Complexes. <i>ChemCatChem</i> , 2015 , 7, 4021-4024	5.2	19
492	Competitive Gold-Promoted Meyer-Schuster and oxy-Cope Rearrangements of 3-Acyloxy-1,5-enynes: Selective Catalysis for the Synthesis of (+)-(S)-Elonone and (-)-(2S,6 R)-cis-Elrone. <i>Chemistry - A European Journal</i> , 2015 , 21, 14068-74	4.8	9
491	Influence of bulky yet flexible N-heterocyclic carbene ligands in gold catalysis. <i>Beilstein Journal of Organic Chemistry</i> , 2015 , 11, 1809-14	2.5	12
490	Olefin metathesis in air. Beilstein Journal of Organic Chemistry, 2015, 11, 2038-56	2.5	30
489	N-Heterocyclic carbenes. <i>Beilstein Journal of Organic Chemistry</i> , 2015 , 11, 2474-5	2.5	
488	Continuous Flow Metathesis for Direct Valorization of Food Waste: An Example of Cocoa Butter Triglyceride. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 1453-1459	8.3	21
487	The mechanism of CO2 insertion into iridium(I) hydroxide and alkoxide bonds: a kinetics and computational study. <i>Chemistry - A European Journal</i> , 2015 , 21, 6930-5	4.8	13
486	The SuzukiMiyaura Reaction Performed Using a PalladiumM-Heterocyclic Carbene Catalyst and a Weak Inorganic Base. <i>European Journal of Organic Chemistry</i> , 2015 , 2015, 1920-1924	3.2	25
485	Transition Metal-Catalyzed Carboxylation of Organic Substrates with Carbon Dioxide. <i>Topics in Organometallic Chemistry</i> , 2015 , 225-278	0.6	19
484	The gold(i)-catalysed protodecarboxylation mechanism. <i>Chemistry - A European Journal</i> , 2015 , 21, 3399-	40.8	16
483	Evaluation of an olefin metathesis pre-catalyst with a bulky and electron-rich N-heterocyclic carbene. <i>Journal of Organometallic Chemistry</i> , 2015 , 780, 43-48	2.3	24
482	Stereoselective Gold(I)-Catalyzed Intermolecular Hydroalkoxlation of Alkynes. <i>ACS Catalysis</i> , 2015 , 5, 1330-1334	13.1	71
481	Enthalpies of ligand substitution for [Mo(BC5H5)(CO)2(NO)] IThe role of Ebonding effects in metalligand bond strengths. <i>Journal of Chemical Thermodynamics</i> , 2014 , 73, 156-162	2.9	
480	Chemoselective Ruthenium-Catalysed Reduction of Carboxylic Acids. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 308-312	5.6	26

479	Ruthenium-Indenylidene and Other Alkylidene Containing Olefin Metathesis Catalysts 2014 , 417-436		3
478	Efficient CN and CB Bond Formation Using the Highly Active [Ni(allyl)Cl(IPr*OMe)] Precatalyst. <i>European Journal of Organic Chemistry</i> , 2014 , 2014, 3127-3131	3.2	50
477	Letter to the Editor concerning: CarbonHeteroatom Coupling Using PdPEPPSI ComplexesIby Valente et al <i>Organic Process Research and Development</i> , 2014 , 18, 456-457	3.9	1
476	From ruthenium olefin metathesis catalyst to (B-3-phenylindenyl)hydrido complex via alcoholysis. <i>Chemical Communications</i> , 2014 , 50, 2205-7	5.8	19
475	New [Au(NHC)(OH)] Complexes for Silver-Free Protocols. <i>Organometallics</i> , 2014 , 33, 421-424	3.8	28
474	Ruthenium catalysed C-H bond borylation. <i>Chemical Communications</i> , 2014 , 50, 6782-4	5.8	46
473	Key processes in ruthenium-catalysed olefin metathesis. <i>Chemical Communications</i> , 2014 , 50, 10355-75	5.8	119
472	How phenyl makes a difference: mechanistic insights into the ruthenium(II)-catalysed isomerisation of allylic alcohols. <i>Chemical Science</i> , 2014 , 5, 180-188	9.4	52
471	Trapping atmospheric CO2 with gold. Chemical Communications, 2014, 50, 11321-4	5.8	11
470	CO2 fixation employing an iridium(I)-hydroxide complex. <i>Chemical Communications</i> , 2014 , 50, 286-8	5.8	27
469	The use of the sterically demanding IPr* and related ligands in catalysis. <i>Chemical Communications</i> , 2014 , 50, 14926-37	5.8	91
468	Regioselective ruthenium catalysed H-D exchange using D2O as the deuterium source. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 8683-8	3.9	31
467	N-Heterocyclic Carbenes 2014 , 1-24		11
466	Exploring the Coordination of Cyclic Selenoureas to Gold(I). <i>Organometallics</i> , 2014 , 33, 3640-3645	3.8	62
465	Tuning and Quantifying Steric and Electronic Effects of N-Heterocyclic Carbenes 2014 , 25-38		
464	Chiral Monodendate N-Heterocyclic Carbene Ligands in Asymmetric Catalysis 2014 , 39-84		3
463	(N-Heterocyclic Carbene)Palladium Complexes in Catalysis 2014 , 85-110		1
462	NHC Platinum(0) Complexes: Unique Catalysts for the Hydrosilylation of Alkenes and Alkynes 2014 , 111	-150	1

461	Synthesis and Medicinal Properties of SilverNHC Complexes and Imidazolium Salts 2014 , 151-172	2
460	Medical Applications of NHCLold and Lopper Complexes 2014, 173-198	3
459	NHClopper Complexes and their Applications 2014 , 199-242	9
458	NHCAu(I) Complexes: Synthesis, Activation, and Application 2014, 243-270	4
457	Recent Developments in the Synthesis and Applications of Rhodium and Iridium Complexes Bearing N-Heterocyclic Carbene Ligands 2014 , 271-306	1
456	N-Heterocyclic Carbene R uthenium Complexes: A Prominent Breakthrough in Metathesis Reactions 2014 , 307-340	
455	Ruthenium N-Heterocyclic Carbene Complexes for the Catalysis of Nonmetathesis Organic Transformations 2014 , 341-370	1
454	Nickel Complexes of N-Heterocyclic Carbenes 2014 , 371-396	2
453	Coordination Chemistry, Reactivity, and Applications of Early Transition Metal Complexes Bearing N-Heterocyclic Carbene Ligands 2014 , 397-426	
452	NHC Complexes of Main Group Elements: Novel Structures, Reactivity, and Catalytic Behavior 2014 , 427-49	8 3
451	Catalysis with Acyclic Aminocarbene Ligands: Alternatives to NHCs with Distinct Steric and Electronic Properties 2014 , 499-524	2
450	A cationic ruthenium complex for the dynamic kinetic resolution of secondary alcohols. <i>Chemistry -</i> A European Journal, 2014 , 20, 13132-5	23
449	Iridium(I) hydroxides in catalysis: rearrangement of allylic alcohols to ketones. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 6672-6	16
448	From a decomposition product to an efficient and versatile catalyst: the [Ru(B-indenyl)(PPh3)2Cl] story. <i>Accounts of Chemical Research</i> , 2014 , 47, 3089-101	3 29
447	A novel route for large-scale synthesis of [Au(NHC)(OH)] complexes. <i>Polyhedron</i> , 2014 , 84, 59-62 2.7	29
446	Methoxy-Functionalized N-Heterocyclic Carbenes. <i>Organometallics</i> , 2014 , 33, 2048-2058 3.8	83
445	[Au]/[Pd] Multicatalytic processes: direct one-pot access to benzo[c]chromenes and benzo[b]furans. <i>Chemistry - A European Journal</i> , 2014 , 20, 13507-10	15
444	Highly Efficient and Eco-Friendly Gold-Catalyzed Synthesis of Homoallylic Ketones. <i>ACS Catalysis</i> , 2014 , 4, 2701-2705	1 51

443	Insights into the decomposition of olefin metathesis precatalysts. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8995-9	16.4	51
442	[Pd(IPr*OMe)(cin)Cl] (cin = Cinnamyl): A Versatile Catalyst for CN and CN Bond Formation. <i>Organometallics</i> , 2014 , 33, 1253-1258	3.8	78
441	Nickel-catalysed carboxylation of organoboronates. Chemical Communications, 2014, 50, 8010-3	5.8	53
440	[1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]chloro-gold 2014 , 1-3		1
439	[1,3-Bis[2,6-bis(1-methylethyl)phenyl]-2-imidazolidinylidene]chloro-gold 2014 , 1-2		1
438	A New Synthetic Route to p-Methoxy-2,6-disubstituted Anilines and their Conversion into N-Heterocyclic Carbene Precursors. <i>Synlett</i> , 2014 , 25, 393-398	2.2	9
437	Palladium-catalyzed \Box -arylation of arylketones at low catalyst loadings. <i>Chemistry - A European Journal</i> , 2014 , 20, 17272-6	4.8	22
436	Insights into the Decomposition of Olefin Metathesis Precatalysts. <i>Angewandte Chemie</i> , 2014 , 126, 914	11396145	5 7
435	Straightforward synthesis of $[Au(NHC)X]$ (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. <i>Chemical Communications</i> , 2013 , 49, 5541-3	5.8	172
434	Exploring the Limits of Catalytic Ammonia B orane Dehydrogenation Using a Bis(N-heterocyclic carbene) Iridium(III) Complex. <i>Organometallics</i> , 2013 , 32, 3769-3772	3.8	26
433	Direct S-Arylation of Unactivated Arylsulfoxides Using [Pd(IPr*)(cin)Cl]. ACS Catalysis, 2013, 3, 2190-219	9313.1	54
432	Accelerating influence of the gem-difluoromethylene group in a ring-closing olefin metathesis reaction. A Thorpe-Ingold effect?. <i>Chemical Communications</i> , 2013 , 49, 7201-3	5.8	19
431	Facile and efficient KOH-catalysed reduction of esters and tertiary amides. <i>Chemical Communications</i> , 2013 , 49, 9758-60	5.8	54
430	Hydrophenoxylation of alkynes by cooperative gold catalysis. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 9767-71	16.4	107
429	The preparation of trisubstituted alkenyl nucleoside phosphonates under ultrasound-assisted olefin cross-metathesis. <i>Organic Letters</i> , 2013 , 15, 4390-3	6.2	14
428	Steric Maps to Evaluate the Role of Steric Hindrance on the IPr NHC Ligand. <i>Procedia Computer Science</i> , 2013 , 18, 845-854	1.6	5
427	Gold(I)-catalyzed protodecarboxylation of (hetero)aromatic carboxylic acids. <i>Chemistry - A European Journal</i> , 2013 , 19, 14034-8	4.8	37
426	Enhanced Activity of [Ni(NHC)CpCl] Complexes in Arylamination Catalysis. <i>Organometallics</i> , 2013 , 32, 6265-6270	3.8	79

425	Effect of Electronic Enrichment of NHCs on the Catalytic Activity of [Pd(NHC)(acac)Cl] in BuchwaldHartwig Coupling. <i>Organometallics</i> , 2013 , 32, 7547-7551	3.8	46
424	Deuteration of boranes: catalysed versus non-catalysed processes. <i>Dalton Transactions</i> , 2013 , 42, 4105-	· 9 4.3	19
423	Synthesis and reactivity of new bis(N-heterocyclic carbene) iridium(I) complexes. <i>Inorganic Chemistry</i> , 2013 , 52, 12674-81	5.1	10
422	Carbon-sulfur bond formation catalyzed by [Pd(IPr*(OMe))(cin)Cl] (cin = cinnamyl). <i>Journal of Organic Chemistry</i> , 2013 , 78, 9303-8	4.2	7 ²
421	A general synthetic route to $[Cu(X)(NHC)]$ (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. Chemical Communications, 2013 , 49, 10483-5	5.8	92
420	Synthesis, characterisation, and oxygen atom transfer reactions involving the first gold(I)-alkylperoxo complexes. <i>Chemical Communications</i> , 2013 , 49, 10745-7	5.8	16
419	Synthesis and structure of large difluoromethylene containing alicycles by ring closing metathesis (RCM). <i>Organic and Biomolecular Chemistry</i> , 2013 , 11, 8209-13	3.9	8
418	Well-defined NHC-rhodium hydroxide complexes as alkene hydrosilylation and dehydrogenative silylation catalysts. <i>Dalton Transactions</i> , 2013 , 42, 270-6	4.3	41
417	[Pd(IPr*OMe)(acac)Cl]: Tuning the N-Heterocyclic Carbene in Catalytic CN Bond Formation. <i>Organometallics</i> , 2013 , 32, 330-339	3.8	130
416	Straightforward Synthetic Access to gem-Diaurated and Digold [[Acetylide Species. <i>Angewandte Chemie</i> , 2013 , 125, 972-976	3.6	30
415	Straightforward synthetic access to gem-diaurated and digold Eacetylide species. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 938-42	16.4	80
414	Polymerization of cyclic esters using N-heterocyclic carbene carboxylate catalysts. <i>Polymer Chemistry</i> , 2013 , 4, 2414	4.9	37
413	Synthesis of N-Heterocyclic Carbene Gold Complexes Using Solution-Phase and Solid-State Protocols. <i>Organometallics</i> , 2013 , 32, 2271-2274	3.8	45
412	Solvent-free aryl amination catalysed by [Pd(NHC)] complexes. RSC Advances, 2013, 3, 3840	3.7	53
411	Copper N-heterocyclic carbene complexes in catalysis. Catalysis Science and Technology, 2013, 3, 912	5.5	159
410	[{Au(NHC)}2(EDH)][BF4]: Silver-Free and Acid-Free Catalysts for Water-Inclusive Gold-Mediated Organic Transformations. <i>Organometallics</i> , 2013 , 32, 1106-1111	3.8	89
409	Chemoselective Oxidation of Secondary Alcohols Using a Ruthenium Phenylindenyl Complex. <i>Organometallics</i> , 2013 , 32, 660-664	3.8	30
408	Iridium(I) hydroxides: powerful synthons for bond activation. <i>Chemistry - A European Journal</i> , 2013 , 19, 7904-16	4.8	35

407	The activation mechanism of Ru-indenylidene complexes in olefin metathesis. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7073-9	16.4	88
406	How does the addition of steric hindrance to a typical N-heterocyclic carbene ligand affect catalytic activity in olefin metathesis?. <i>Dalton Transactions</i> , 2013 , 42, 7433-9	4.3	66
405	Efficient ruthenium-catalysed S-S, S-Si and S-B bond forming reactions. <i>Chemical Communications</i> , 2013 , 49, 5829-31	5.8	37
404	Steric and Electronic Parameters of a Bulky yet Flexible N-Heterocyclic Carbene: 1,3-Bis(2,6-bis(1-ethylpropyl)phenyl)imidazol-2-ylidene (IPent). <i>Organometallics</i> , 2013 , 32, 3249-3252	3.8	41
403	Palladium-N-heterocyclic carbene (NHC) catalyzed CN bond formation in a continuous flow microreactor. Effect of process parameters and comparison with batch operation. <i>Chemical Engineering Journal</i> , 2013 , 223, 578-583	14.7	30
402	Quantifying and understanding the electronic properties of N-heterocyclic carbenes. <i>Chemical Society Reviews</i> , 2013 , 42, 6723-53	58.5	757
401	Synthesis and broad spectrum antiviral evaluation of bis(POM) prodrugs of novel acyclic nucleosides. <i>European Journal of Medicinal Chemistry</i> , 2013 , 67, 398-408	6.8	19
400	Stable Carbenes: From 🛘 aboratory Curiosities' to Catalysis Mainstays. <i>Synlett</i> , 2013 , 24, 1188-1189	2.2	55
399	Large yet flexible N-heterocyclic carbene ligands for palladium catalysis. <i>Chemistry - A European Journal</i> , 2013 , 19, 17358-68	4.8	94
398	Hydrophenoxylation of Alkynes by Cooperative Gold Catalysis. <i>Angewandte Chemie</i> , 2013 , 125, 9949-99	95336	36
397	A Highly Active Cationic Ruthenium Complex for Alkene Isomerisation: A Catalyst for the Synthesis of High Value Molecules. <i>ChemCatChem</i> , 2013 , 5, 2848-2851	5.2	25
396	Synthesis, characterization and luminescence studies of gold(I)-NHC amide complexes. <i>Beilstein Journal of Organic Chemistry</i> , 2013 , 9, 2216-23	2.5	21
395	Gold(I)-catalyzed stereoselective synthesis of alkenyl phosphates by hydrophosphoryloxylation. <i>Chemistry - A European Journal</i> , 2012 , 18, 1064-7	4.8	22
394	From olefin metathesis catalyst to alcohol racemization catalyst in one step. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1042-5	16.4	45
393	[Pd(IPr*)(acac)Cl]: An Easily Synthesized, Bulky Precatalyst for CN Bond Formation. <i>Organometallics</i> , 2012 , 31, 3402-3409	3.8	73
392	The fluoride-free transmetalation of organosilanes to gold. <i>Chemistry - A European Journal</i> , 2012 , 18, 14923-8	4.8	31
391	Effect of Ligand Bulk in Ruthenium-Catalyzed Olefin Metathesis: IPr* vs IPr. <i>Organometallics</i> , 2012 , 31, 6514-6517	3.8	42
390	[Pd(IPr*)(3-Cl-pyridinyl)Cl2]: A Novel and Efficient PEPPSI Precatalyst. <i>Organometallics</i> , 2012 , 31, 6947-	69531	115

389	The Role of Metal Hydroxide Complexes in Late Transition Metal-Mediated Transmetalation Reaction: The Case of Gold. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 2380-2386	5.6	33
388	One-Pot Gold-Catalyzed Synthesis of Azepino[1,2-a]indoles. <i>Angewandte Chemie</i> , 2012 , 124, 10029-100	3346	29
387	One-pot gold-catalyzed synthesis of azepino[1,2-a]indoles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9891-5	16.4	72
386	Bulky N-Heterocyclic Carbene IPr* in Selected Organo- and Transition Metal-Mediated Catalytic Applications. <i>Organometallics</i> , 2012 , 31, 3259-3263	3.8	48
385	E/Z selectivity in ruthenium-mediated cross metathesis. Catalysis Science and Technology, 2012, 2, 1027	5.5	18
384	Coordinatively Unsaturated Ruthenium Complexes As Efficient AlkyneAzide Cycloaddition Catalysts. <i>Organometallics</i> , 2012 , 31, 756-767	3.8	65
383	Tandem deuteration/hydrosilylation reactions catalyzed by a rhodium carbene complex under solvent-free conditions. <i>Chemical Communications</i> , 2012 , 48, 2794-6	5.8	10
382	Synthetic routes to [Au(NHC)(OH)] (NHC = N-heterocyclic carbene) complexes. <i>Dalton Transactions</i> , 2012 , 41, 5461-3	4.3	43
381	Ruthenium Phenylindenyl Complex as an Efficient Transfer Hydrogenation Catalyst. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 3036-3044	5.6	30
380	Phosphate binding to the [Au(IPr)] moiety: inner vs. outer sphere coordination behaviour. <i>Dalton Transactions</i> , 2012 , 41, 8235-7	4.3	9
379	Extending the utility of [Pd(NHC)(cinnamyl)Cl] precatalysts: Direct arylation of heterocycles. <i>Beilstein Journal of Organic Chemistry</i> , 2012 , 8, 1637-43	2.5	53
378	An Efficient Palladium-NHC (NHC=N-Heterocyclic Carbene) and Aryl Amination Pre-Catalyst: [Pd(IPr*)(cinnamyl)Cl]. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 1897-1901	5.6	81
377	From Olefin Metathesis Catalyst to Alcohol Racemization Catalyst in One Step. <i>Angewandte Chemie</i> , 2012 , 124, 1066-1069	3.6	13
376	Katalyse mit zweikernigen Goldkomplexen: Sind zwei Goldzentren besser als eines?. <i>Angewandte Chemie</i> , 2012 , 124, 8278-8281	3.6	75
375	Dinuclear gold catalysis: are two gold centers better than one?. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 8156-9	16.4	150
374	[Pd(IPr*)(cinnamyl)Cl]: an efficient pre-catalyst for the preparation of tetra-ortho-substituted biaryls by Suzuki-Miyaura cross-coupling. <i>Chemistry - A European Journal</i> , 2012 , 18, 4517-21	4.8	142
373	N-heterocyclic carbene gold(I) and copper(I) complexes in C-H bond activation. <i>Accounts of Chemical Research</i> , 2012 , 45, 778-87	24.3	292
372	Direct C-H carboxylation with complexes of the coinage metals. <i>Chemical Communications</i> , 2011 , 47, 3021-4	5.8	131

371	Continuous flow homogeneous alkene metathesis with built-in catalyst separation. <i>Green Chemistry</i> , 2011 , 13, 1187	10	78
370	Decarboxylation of aromatic carboxylic acids by gold(I)-N-heterocyclic carbene (NHC) complexes. <i>Chemical Communications</i> , 2011 , 47, 5455-7	5.8	80
369	Catalytic deuteration of silanes mediated by N-heterocyclic carbene-Ir(III) complexes. <i>Chemical Communications</i> , 2011 , 47, 9723-5	5.8	32
368	Well-defined [Rh(NHC)(OH)] complexes enabling the conjugate addition of arylboronic acids to 日,和nsaturated ketones. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 7038-41	3.9	34
367	Synthesis, Characterization, and Reactivity of N-Heterocyclic Carbene Palladium(II) Hydroxide Dimers. <i>Organometallics</i> , 2011 , 30, 4494-4496	3.8	37
366	Gold(I)-catalyzed synthesis of furans and pyrroles via alkyne hydration. <i>Catalysis Science and Technology</i> , 2011 , 1, 58	5.5	68
365	Highly Active Iridium(III)NHC System for the Catalytic BN Bond Activation and Subsequent Solvolysis of AmmoniaBorane. <i>Organometallics</i> , 2011 , 30, 5487-5492	3.8	41
364	Luminescent Hyperbranched Polymers: Combining Thiol-Yne Chemistry with Gold-Mediated CH Bond Activation. <i>Organometallics</i> , 2011 , 30, 1315-1318	3.8	43
363	Polymerization of Racemic	3.8	34
362	Selectivity Switch in the Synthesis of Vinylgold(I) Intermediates. <i>Organometallics</i> , 2011 , 30, 6328-6337	3.8	110
361	Oxygen binding to [Pd(L)(L')] (L= NHC, L' = NHC or PR3, NHC = N-heterocyclic carbene). synthesis and structure of a paramagnetic trans-[Pd(NHC)2([1)-O2)2] complex. <i>Journal of the American Chemical Society</i> , 2011 , 133, 1290-3	16.4	45
360	The influence of N-heterocyclic carbene steric and electronic properties in Ru-catalysed cross metathesis reactions. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 3935-3938	2.3	13
359	A combined mechanistic and computational study of the gold(I)-catalyzed formation of substituted indenes. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 101-4	3.9	50
358	Influence of a Very Bulky N-Heterocyclic Carbene in Gold-Mediated Catalysis. <i>Organometallics</i> , 2011 , 30, 5463-5470	3.8	81
357	N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. <i>Chemical Society Reviews</i> , 2011 , 40, 5151-69	58.5	977
356	Steric and Electronic Parameters Characterizing Bulky and Electron-Rich Dialkylbiarylphosphines. <i>Organometallics</i> , 2011 , 30, 1668-1676	3.8	33
355	The development and catalytic uses of N-heterocyclic carbene gold complexes. <i>Accounts of Chemical Research</i> , 2011 , 44, 91-100	24.3	541
354	Synthesis of N-heterocyclic carbene ligands and derived ruthenium olefin metathesis catalysts. Nature Protocols, 2011, 6, 69-77	18.8	134

353	N-heterocyclic carbene complexes of au, pd, and pt as effective catalysts in organic synthesis. <i>Topics in Current Chemistry</i> , 2011 , 302, 131-55		45	
352	Simple synthetic routes to ruthenium-indenylidene olefin metathesis catalysts. <i>Chemical Communications</i> , 2011 , 47, 5022-4	5.8	40	
351	Expeditious convergent procedure for the preparation of bis(POC) prodrugs of new (E)-4-phosphono-but-2-en-1-yl nucleosides. <i>Tetrahedron</i> , 2011 , 67, 5319-5328	2.4	31	
350	Gold(I)-Catalyzed Tandem Alkoxylation/Lactonization of EHydroxy-∃, EAcetylenic Esters. <i>Advanced Synthesis and Catalysis</i> , 2011 , 353, 1575-1583	5.6	22	
349	The Shortest Strategy for Generating Phosphonate Prodrugs by Olefin Cross-Metathesis Application to Acyclonucleoside Phosphonates. <i>European Journal of Organic Chemistry</i> , 2011 , 2011, 73	24 ³ 7330	o ¹⁴	
348	[{Au(IPr)}2(EDH)]X complexes: synthetic, structural and catalytic studies. <i>Chemistry - A European Journal</i> , 2011 , 17, 1238-46	4.8	103	
347	Olefin metathesis featuring ruthenium indenylidene complexes with a sterically demanding NHC ligand. <i>Chemistry - A European Journal</i> , 2011 , 17, 5045-53	4.8	53	
346	Cytotoxicity of gold(I) N-heterocyclic carbene complexes assessed by using human tumor cell lines. <i>Chemistry - A European Journal</i> , 2011 , 17, 6620-4	4.8	77	
345	Ruthenium Hydroxide Complexes in the Racemization of Secondary Alcohols. <i>Organometallics</i> , 2011 , 30, 6347-6350	3.8	18	
344	Highly Active Well-Defined Palladium Precatalysts for the Efficient Amination of Aryl Chlorides. <i>Organometallics</i> , 2011 , 30, 4432-4436	3.8	43	
343	Efficient silver-free gold(I)-catalyzed hydration of alkynes at low catalyst loading. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 7-11	2.3	86	
342	Gold-mediated synthesis of ⊞-ionone. <i>Tetrahedron Letters</i> , 2011 , 52, 1124-1127	2	29	
341	The role of silver additives in gold-mediated C-H functionalisation. <i>Beilstein Journal of Organic Chemistry</i> , 2011 , 7, 892-6	2.5	38	
340	Halide exchanged Hoveyda-type complexes in olefin metathesis. <i>Beilstein Journal of Organic Chemistry</i> , 2010 , 6, 1091-8	2.5	44	
339	Backbone tuning in indenylidene-ruthenium complexes bearing an unsaturated N-heterocyclic carbene. <i>Beilstein Journal of Organic Chemistry</i> , 2010 , 6, 1120-6	2.5	57	
338	1,3-Bis(2,6-diisopropylphenyl)imidazolidinium Chloride 2010 ,		1	
337	Au/Ag-cocatalyzed aldoximes to amides rearrangement under solvent- and acid-free conditions. Journal of Organic Chemistry, 2010 , 75, 1197-202	4.2	121	
336	Carboxylation of C-H bonds using N-heterocyclic carbene gold(I) complexes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8858-9	16.4	421	

335	Solution Calorimetric Study of Ligand Exchange Reactions in the [Au(L)Cl] System (L = Phosphine and Phosphite). <i>Organometallics</i> , 2010 , 29, 4579-4583	3.8	27
334	Ruthenium Complexes Bearing Two N-Heterocyclic Carbene Ligands in Low Catalyst Loading Olefin Metathesis Reactions. <i>Organometallics</i> , 2010 , 29, 3007-3011	3.8	43
333	Chemoselective olefin metathesis transformations mediated by ruthenium complexes. <i>Chemical Society Reviews</i> , 2010 , 39, 3305-16	58.5	189
332	Ruthenium Olefin Metathesis Catalysts with N-Heterocyclic Carbene Ligands Bearing N-Naphthyl Side Chains. <i>Organometallics</i> , 2010 , 29, 775-788	3.8	50
331	Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry. <i>Chemical Communications</i> , 2010 , 46, 841-61	5.8	732
330	A N-heterocyclic carbene gold hydroxide complex: a golden synthon. <i>Chemical Communications</i> , 2010 , 46, 2742-4	5.8	248
329	A Versatile Cuprous Synthon: [Cu(IPr)(OH)] (IPr = 1,3 bis(diisopropylphenyl)imidazol-2-ylidene). Organometallics, 2010 , 29, 3966-3972	3.8	99
328	Mixed Phosphite/N-Heterocyclic Carbene Complexes: Synthesis, Characterization and Catalytic Studies. <i>Organometallics</i> , 2010 , 29, 1443-1450	3.8	80
327	Ligand influence in the selective gold-mediated synthesis of allenes. <i>Chemical Communications</i> , 2010 , 46, 9113-5	5.8	47
326	Gold-Catalyzed MeyerBchuster Rearrangement: Application to the Synthesis of Prostaglandins. <i>Organometallics</i> , 2010 , 29, 3665-3668	3.8	62
325	Expeditious Synthesis of $[Au(NHC)(L)]+ (NHC = N-Heterocyclic Carbene; L = Phosphine or NHC) Complexes \square Organometallics, 2010, 29, 5402-5408$	3.8	73
324	Synthetic and Structural Studies of [AuCl3(NHC)] Complexes. <i>Organometallics</i> , 2010 , 29, 394-402	3.8	121
323	Unusual reactivities of N-heterocyclic carbenes upon coordination to the platinum(II)-dimethyl moiety. <i>Chemical Communications</i> , 2010 , 46, 1050-2	5.8	46
322	Flexible cycloalkyl-substituted N-heterocyclic carbenes. <i>Dalton Transactions</i> , 2010 , 39, 3923-30	4.3	19
321	A versatile gold synthon for acetylene C-H bond activation. <i>Dalton Transactions</i> , 2010 , 39, 10382-90	4.3	55
320	N-heterocyclic carbene-ruthenium complexes for the racemization of chiral alcohols. <i>Journal of Organic Chemistry</i> , 2010 , 75, 2039-43	4.2	37
319	Modified [(IPr)Pd(R-acac)Cl] complexes: influence of the acac substitution on the catalytic activity in aryl amination. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 841-6	4.5	24
318	[(NHC)CuX] complexes: synthesis, characterization and catalytic activities in reduction reactions and Click chemistry. On the advantage of using well-defined catalytic systems. <i>Dalton Transactions</i> ,	4.3	181

(2009-2010)

Mechanism of racemization of chiral alcohols mediated by 16-electron ruthenium complexes. Journal of the American Chemical Society, 2010 , 132, 13146-9	16.4	58
Ring-Rearrangement Metathesis (RRM) Mediated by Ruthenium-Indenylidene Complexes. <i>European Journal of Organic Chemistry</i> , 2010 , 2010, 937-943	3.2	26
Catalytic Cross-Coupling Reactions Mediated by Palladium/Nucleophilic Carbene Systems <i>ChemInform</i> , 2010 , 33, no-no		3
The influence of phosphane ligands on the versatility of ruthenium-indenylidene complexes in metathesis. <i>Chemistry - A European Journal</i> , 2010 , 16, 9215-25	4.8	58
Development of versatile and silver-free protocols for gold(I) catalysis. <i>Chemistry - A European Journal</i> , 2010 , 16, 13729-40	4.8	158
Carboxylation of N?H/C?H Bonds Using N-Heterocyclic Carbene Copper(I) Complexes. <i>Angewandte Chemie</i> , 2010 , 122, 8856-8859	3.6	86
Carboxylation of N-H/C-H bonds using N-heterocyclic carbene copper(I) complexes. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 8674-7	16.4	275
The MeyerBchuster rearrangement: a new synthetic strategy leading to prostaglandins and their drug analogs, Bimatoprost and Latanoprost. <i>Tetrahedron</i> , 2010 , 66, 7472-7478	2.4	33
Building Indenylidene Ruthenium Catalysts for Metathesis Transformations. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2010 , 39-47	0.1	1
Gold- and platinum-catalyzed cycloisomerization of enynyl esters versus allenenyl esters: an experimental and theoretical study. <i>Chemistry - A European Journal</i> , 2009 , 15, 3243-60	4.8	122
Toxicity of copper(I)-NHC complexes against human tumor cells: induction of cell cycle arrest, apoptosis, and DNA cleavage. <i>Chemistry - A European Journal</i> , 2009 , 15, 314-8	4.8	8o
Hydrogenation of C-C multiple bonds mediated by [Pd(NHC)(PCy(3))] (NHC=N-heterocyclic carbene) under mild reaction conditions. <i>Chemistry - A European Journal</i> , 2009 , 15, 2509-11	4.8	56
Chemodivergent metathesis of dienynes catalyzed by ruthenium-indenylidene complexes: an experimental and computational study. <i>Chemistry - A European Journal</i> , 2009 , 15, 10244-54	4.8	56
Gold activation of nitriles: catalytic hydration to amides. <i>Chemistry - A European Journal</i> , 2009 , 15, 8695-	-7 4.8	157
[Pd(NHC)(allyl)Cl] Complexes: Synthesis and Determination of the NHC Percent Buried Volume (%Vbur) Steric Parameter. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 1767-1773	2.3	73
Click Azide-Alkyne Cycloaddition for the Synthesis of D-([]-1,4-Disubstituted Triazolo-Carbanucleosides. <i>European Journal of Organic Chemistry</i> , 2009 , 2009, 1880-1888	3.2	25
Towards Long-Living Metathesis Catalysts by Tuning the N-Heterocyclic Carbene (NHC) Ligand on Trifluoroacetamide-Activated Boomerang Ru Complexes. <i>European Journal of Organic Chemistry</i> , 2009 , 2009, 4254-4265	3.2	68
Activation of hydrogen by palladium(0): formation of the mononuclear dihydride complex trans-[Pd(H)2(IPr)(PCy3)]. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5182-6	16.4	51
	Ring-Rearrangement Metathesis (RRM) Mediated by Ruthenium-Indenylidene Complexes. European Journal of Organic Chemistry, 2010, 2010, 937-943 Catalytic Cross-Coupling Reactions Mediated by Palladium/Nucleophilic Carbene Systems Cheminform, 2010, 33, no-no The influence of phosphane ligands on the versatility of ruthenium-indenylidene complexes in metathesis. Chemistry - A European Journal, 2010, 16, 9215-25 Development of versatile and silver-free protocols for gold(l) catalysis. Chemistry - A European Journal, 2010, 16, 13729-40 Carboxylation of NPH/C?H Bonds Using N-Heterocyclic Carbene Copper(l) Complexes. Angewandte Chemie, 2010, 122, 8856-8859 Carboxylation of NPH/C-H bonds using N-heterocyclic carbene copper(l) complexes. Angewandte Chemie, 2010, 122, 8856-8859 Carboxylation of N-H/C-H bonds using N-heterocyclic carbene copper(l) complexes. Angewandte Chemie, 2010, 122, 8856-8859 Carboxylation of N-H/C-H bonds using N-heterocyclic carbene copper(l) complexes. Angewandte Chemie-International Edition, 2010, 49, 8674-7 The MeyerGchuster rearrangement: a new synthetic strategy leading to prostaglandins and their drug analogs, Bimatoprost and Latanoprost. Tetrahedron, 2010, 66, 7472-7478 Building IndenylideneRuthenium Catalysts for Metathesis Transformations. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, 39-47 Gold- and platinum-catalyzed cycloisomerization of enynyl esters versus allenenyl esters: an experimental and theoretical study. Chemistry - A European Journal, 2009, 15, 3243-60 Toxicity of copper(l)-NHC complexes against human tumor cells: induction of cell cycle arrest, apoptosis, and DNA cleavage. Chemistry - A European Journal, 2009, 15, 3243-60 Toxicity of copper(l)-NHC complexes against human tumor cells: induction of cell cycle arrest, apoptosis, and DNA cleavage. Chemistry - A European Journal, 2009, 15, 259-11 Chemodivergent metathesis of dienynes catalyzed by ruthenium-indenylidene complexes: an experimental and computational study. Chemistry - A Euro	Ring-Rearrangement Metathesis (RRM) Mediated by Ruthenium-Indenylidene Complexes. European Journal of Organic Chemistry, 2010, 2010, 937-943 Catalytic Cross-Coupling Reactions Mediated by Palladium/Nucleophilic Carbene Systems Cheminform, 2010, 33, no-no The influence of phosphane ligands on the versatility of ruthenium-indenylidene complexes in metathesis. Chemistry - A European Journal, 2010, 16, 9215-25 Development of versatile and silver-free protocols for gold(i) catalysis. Chemistry - A European Journal, 2010, 16, 9215-25 Development of versatile and silver-free protocols for gold(i) catalysis. Chemistry - A European Journal, 2010, 16, 13729-40 Carboxylation of N7H/C7H Bonds Using N-Heterocyclic Carbene Copper(i) Complexes. Angewandte Chemie, 2010, 122, 8856-8859 Carboxylation of N-H/C-H bonds using N-heterocyclic carbene copper(i) complexes. Angewandte Chemie - International Edition, 2010, 49, 8674-7 The MeyerBchuster rearrangement: a new synthetic strategy leading to prostaglandins and their drug analogs, Bimatoprost and Latanoprost. Tetrohedron, 2010, 66, 7472-7478 Building IndenylideneButhenium Catalysts for Metathesis Transformations. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, 39-47 Cold- and platinum-catalyzed cycloisomerization of enynyl esters versus allenenyl esters: an experimental and theoretical study. Chemistry - A European Journal, 2009, 15, 3243-60 48 Toxicity of copper(i)-NHC complexes against human tumor cells: induction of cell cycle arrest, apoptosis, and DNA cleavage. Chemistry - A European Journal, 2009, 15, 359-11 Chemodivergent metathesis of dienynes catalyzed by ruthenium-indenylidene complexes: an experimental and computational study. Chemistry - A European Journal, 2009, 15, 10244-54 Gold activation of nitriles: catalytic hydration to amides. Chemistry - A European Journal, 2009, 15, 8695-74, 8 [Pd(NHC)(allyl)CI] Complexes: Synthesis and Determination of the NHC Percent Buried Volume (%VbUr) Steric Parameter. European Journal of In

299	[(NHC)AuCl]-catalyzed MeyerBchuster rearrangement: scope and limitations. <i>Tetrahedron</i> , 2009 , 65, 1767-1773	2.4	97
298	Synthesis of (⊞)-1,2,3-triazolo-3?-deoxy-4?-hydroxymethyl carbanucleosides via ⊞icklæycloaddition. <i>Tetrahedron</i> , 2009 , 65, 1162-1170	2.4	24
297	Cationic NHCgold(I) complexes: Synthesis, isolation, and catalytic activity. <i>Journal of Organometallic Chemistry</i> , 2009 , 694, 551-560	2.3	140
296	Carbenes: Synthesis, properties, and organometallic chemistry. <i>Coordination Chemistry Reviews</i> , 2009 , 253, 862-892	23.2	75 ¹
295	N-heterocyclic carbenes in late transition metal catalysis. <i>Chemical Reviews</i> , 2009 , 109, 3612-76	68.1	2551
294	[(NHC)Au(I)]-catalyzed acid-free alkyne hydration at part-per-million catalyst loadings. <i>Journal of the American Chemical Society</i> , 2009 , 131, 448-9	16.4	402
293	Highly Active [Pd(ECl)(Cl)(NHC)]2 (NHC = N-Heterocyclic Carbene) in the Cross-Coupling of Grignard Reagents with Aryl Chlorides. <i>Organometallics</i> , 2009 , 28, 2915-2919	3.8	67
292	Improving Grubbs' II type ruthenium catalysts by appropriately modifying the N-heterocyclic carbene ligand. <i>Chemical Communications</i> , 2009 , 3783-5	5.8	55
291	N-Heterocyclic carbene containing complexes in catalysis. <i>Annual Reports on the Progress of Chemistry Section B</i> , 2009 , 105, 232		60
290	A Comparative Study on (NHC)Pd(acac)Cl Complexes (NHC = N-heterocyclic carbene): Indications for the Origin of the Different Reactivity of Saturated and Unsaturated NHC in Cross-Coupling Reactions. <i>Organometallics</i> , 2009 , 28, 5809-5813	3.8	61
289	Mechanism of the [(NHC)Au(I)]-catalyzed rearrangement of allylic acetates. A DFT study. <i>Organic Letters</i> , 2009 , 11, 81-4	6.2	41
288	Indenylidene Ruthenium Complex Bearing a Sterically Demanding NHC Ligand: An Efficient Catalyst for Olefin Metathesis at Room Temperature. <i>Organometallics</i> , 2009 , 28, 2848-2854	3.8	103
287	Platinum(II) mediated C(sp3)-H activation of tetramethylthiourea. <i>Dalton Transactions</i> , 2009 , 8107-10	4.3	11
286	Synthesis and characterization of IPr(Me)-containing silver(I), gold(I) and gold(III) complexes. <i>Dalton Transactions</i> , 2009 , 6967-71	4.3	55
285	Mechanism of dihydride formation and hydrogen/deuterium exchange in a cationic iridium(III) complex. <i>Canadian Journal of Chemistry</i> , 2009 , 87, 1362-1368	0.9	7
284	?????????(NHC)-Pd??:????????????????? Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009 , 67, 653-655	0.2	2
283	Ruthenium-indenylidene complexes: powerful tools for metathesis transformations. <i>Chemical Communications</i> , 2008 , 2726-40	5.8	144
282	N-Heterocyclic carbene-containing complexes in catalysis. <i>Annual Reports on the Progress of Chemistry Section B</i> , 2008 , 104, 184		52

(2008-2008)

281	N-Heterocyclic Carbenes (NHCs) Containing N-C-Palladacycle Complexes: Synthesis and Reactivity in Aryl Amination Reactions. <i>Organometallics</i> , 2008 , 27, 5525-5531	3.8	74
280	A [(NHC)CuCl] complex as a latent Click catalyst. <i>Chemical Communications</i> , 2008 , 4747-9	5.8	133
279	Aminocarbonyl group containing Hoveyda-Grubbs-type complexes: synthesis and activity in olefin metathesis transformations. <i>Journal of Organic Chemistry</i> , 2008 , 73, 4225-8	4.2	86
278	N-heterocyclic carbenes in gold catalysis. <i>Chemical Society Reviews</i> , 2008 , 37, 1776-82	58.5	640
277	Thermodynamic, kinetic, and computational study of heavier chalcogen (S, Se, and Te) terminal multiple bonds to molybdenum, carbon, and phosphorus. <i>Inorganic Chemistry</i> , 2008 , 47, 2133-41	5.1	37
276	Synthetic, Structural, and Thermochemical Studies of N-Heterocyclic Carbene (NHC) and Tertiary Phosphine Ligands in the [(L)2Ni(CO)2] (L = PR3, NHC) System. <i>Organometallics</i> , 2008 , 27, 3181-3186	3.8	73
275	Determination of N-Heterocyclic Carbene (NHC) Steric and Electronic Parameters using the [(NHC)Ir(CO)2Cl] System. <i>Organometallics</i> , 2008 , 27, 202-210	3.8	497
274	Copper, silver, and gold complexes in hydrosilylation reactions. <i>Accounts of Chemical Research</i> , 2008 , 41, 349-58	24.3	315
273	Phosphabicyclononane-containing ru complexes: efficient pre-catalysts for olefin metathesis reactions. <i>Journal of Organic Chemistry</i> , 2008 , 73, 259-63	4.2	44
272	Thermodynamics of N-Heterocyclic Carbene Dimerization: The Balance of Sterics and Electronics. <i>Organometallics</i> , 2008 , 27, 2679-2681	3.8	170
271	Room-temperature activation of aryl chlorides in Suzuki-Miyaura coupling using a [Pd(micro-Cl)Cl(NHC)]2 complex (NHC = N-heterocyclic carbene). <i>Chemical Communications</i> , 2008 , 3190-	- 2 ^{5.8}	111
270	Gold-promoted styrene polymerization. <i>Chemical Communications</i> , 2008 , 759-61	5.8	45
269	[(NHC)AuI]-Catalyzed Rearrangement of Allylic Acetates. Organic Letters, 2008, 10, 1037-1037	6.2	12
268	Ionic Liquid Anchored B oomerang Catalysts Bearing Saturated and Unsaturated NHCs: Recyclability in Biphasic Media for Cross-Metathesis. <i>Organometallics</i> , 2008 , 27, 2287-2292	3.8	53
267	Study of Copper(I) Catalysts for the Synthesis of Carbanucleosides via Azide-Alkyne 1,3-Dipolar Cycloaddition. <i>Synthesis</i> , 2008 , 2008, 141-148	2.9	8
266	Synthesis and characterization of [Cu(NHC)2]X complexes: catalytic and mechanistic studies of hydrosilylation reactions. <i>Chemistry - A European Journal</i> , 2008 , 14, 158-68	4.8	140
265	A general synthetic route to mixed NHC-phosphane palladium(0) complexes (NHC=N-heterocyclic carbene). <i>Chemistry - A European Journal</i> , 2008 , 14, 6987-93	4.8	65
264	Golden carousel in catalysis: the cationic gold/propargylic ester cycle. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 718-21	16.4	255

263	[(NHC)2Cu]X complexes as efficient catalysts for azide-alkyne click chemistry at low catalyst loadings. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 8881-4	16.4	239
262	Ruthenium-Indenylidene Complexes: Scope in Cross-Metathesis Transformations. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 2959-2966	5.6	44
261	Preparation of acyclo nucleoside phosphonate analogues based on cross-metathesis. <i>Tetrahedron</i> , 2008 , 64, 3517-3526	2.4	37
2 60	RutheniumIndenylidene complexes in ring opening metathesis polymerization (ROMP) reactions. Journal of Molecular Catalysis A, 2008 , 283, 108-113		28
259	Well-defined N-heterocyclic carbenes-palladium(II) precatalysts for cross-coupling reactions. <i>Accounts of Chemical Research</i> , 2008 , 41, 1440-9	24.3	912
258	Synthesis, Characterization, and Structure of [GaCl3(NHC)] Complexes. Organometallics, 2007, 26, 3256-	-3,2359	49
257	[(NHC)AuI]-catalyzed rearrangement of allylic acetates. <i>Organic Letters</i> , 2007 , 9, 2653-6	6.2	112
256	Copper-carbene complexes as catalysts in the synthesis of functionalized styrenes and aliphatic alkenes. <i>Journal of Organic Chemistry</i> , 2007 , 72, 144-9	4.2	76
255	N-Heterocyclic carbenes: advances in transition metal-mediated transformations and organocatalysis. <i>Annual Reports on the Progress of Chemistry Section B</i> , 2007 , 103, 193		82
254	[(NHC)AuI]-catalyzed formation of conjugated enones and enals: an experimental and computational study. <i>Chemistry - A European Journal</i> , 2007 , 13, 6437-51	4.8	168
253	N-heterocyclic carbene and phosphine ruthenium indenylidene precatalysts: a comparative study in olefin metathesis. <i>Chemistry - A European Journal</i> , 2007 , 13, 8029-36	4.8	135
252	N-heterocyclic carbenes as organocatalysts. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2988-3	3 06 Q	1297
251	Propargylic esters in gold catalysis: access to diversity. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2750-2	16.4	446
250	Sustainable concepts in olefin metathesis. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 6786-80	16.4	305
249	N-Heterocyclic Carbene P alladium Complexes [(NHC)Pd(acac)Cl]: Improved Synthesis and Catalytic Activity in Large-Scale Cross-Coupling Reactions. <i>Advanced Synthesis and Catalysis</i> , 2007 , 349, 2380-2384	4 ^{5.6}	62
248	Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: A quest for understanding. <i>Coordination Chemistry Reviews</i> , 2007 , 251, 874-883	23.2	735
247	Vibrational and electronic spectra and the electronic structure of an unsaturated Arduengo-type carbene. <i>Mendeleev Communications</i> , 2007 , 17, 92-94	1.9	10
246	Study of different copper (I) catalysts for the "click chemistry" approach to carbanucleosides. <i>Nucleosides, Nucleotides and Nucleic Acids</i> , 2007 , 26, 779-83	1.4	12

245	Alkyne-azide click chemistry mediated carbanucleosides synthesis. <i>Nucleosides, Nucleotides and Nucleic Acids</i> , 2007 , 26, 1391-4	1.4	17
244	Cross-metathesis mediated synthesis of new acyclic nucleoside phosphonates. <i>Nucleosides, Nucleotides and Nucleic Acids</i> , 2007 , 26, 1399-402	1.4	2
243	N-Heterocyclic Carbene-Copper(I) Complexes in Homogeneous Catalysis. <i>Synlett</i> , 2007 , 2007, 2158-210	672.2	116
242	Insertion of a N-Heterocyclic Carbene (NHC) into a PlatinumDlefin Bond. <i>Organometallics</i> , 2007 , 26, 3286-3288	3.8	46
241	Electronic Properties of N-Heterocyclic Carbene (NHC) Ligands: Synthetic, Structural, and Spectroscopic Studies of (NHC)Platinum(II) Complexes. <i>Organometallics</i> , 2007 , 26, 5880-5889	3.8	168
240	TRANSITION METAL-CATALYZED HYDROSILYLATION OF CARBONYL COMPOUNDS AND IMINES. A REVIEW. <i>Organic Preparations and Procedures International</i> , 2007 , 39, 523-559	1.1	111
239	Synthesis, Characterization and Reactivity of N-Heterocyclic Carbene Gold(III) Complexes. <i>Organometallics</i> , 2007 , 26, 1376-1385	3.8	168
238	Well-Defined (NHC)Pd (II) Complexes and Their Use in Ct and CN Bond-Forming Reactions 2007 , 231-2	47	
237	Synthesis and Activity in Ring-Closing Metathesis of Phosphine and NHC-Containing RutheniumIndenylidene (Bis)Pyridine Complexes. <i>NATO Science Series Series II, Mathematics, Physics and Chemistry,</i> 2007 , 29-37		3
236	Rapid room temperature Buchwald-Hartwig and Suzuki-Miyaura couplings of heteroaromatic compounds employing low catalyst loadings. <i>Chemistry - A European Journal</i> , 2006 , 12, 5142-8	4.8	298
235	(NHC)Copper(I)-catalyzed [3+2] cycloaddition of azides and mono- or disubstituted alkynes. <i>Chemistry - A European Journal</i> , 2006 , 12, 7558-64	4.8	315
234	Au(I)-catalyzed tandem [3,3] rearrangement-intramolecular hydroarylation: mild and efficient formation of substituted indenes. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 3647-50	16.4	295
233	Aul-Catalyzed Tandem [3,3] RearrangementIntramolecular Hydroarylation: Mild and Efficient Formation of Substituted Indenes. <i>Angewandte Chemie</i> , 2006 , 118, 3729-3732	3.6	96
232	Large-Scale One-Pot Synthesis of N-Heterocyclic Carbene-Pd(allyl)Cl Complexes. <i>Synthesis</i> , 2006 , 2006, 366-367	2.9	6
231	Palladium-catalyzed Reactions Using NHC Ligands 2006 , 47-82		74
230	Palladium-catalyzed Reactions Using NHC Ligands. <i>Topics in Organometallic Chemistry</i> , 2006 , 47-82	0.6	20
229	Synthesis and Characterization of Gold(I)N-Heterocyclic Carbene Complexes Bearing Biologically Compatible Moieties. <i>Organometallics</i> , 2006 , 25, 5824-5828	3.8	60
228	Suzuki-Miyaura, alpha-ketone arylation and dehalogenation reactions catalyzed by a versatile N-heterocyclic carbene-palladacycle complex. <i>Journal of Organic Chemistry</i> , 2006 , 71, 685-92	4.2	226

227	Homogeneous Nickel Catalysts for the Selective Transfer of a Single Arylthio Group in the Catalytic Hydrothiolation of Alkynes. <i>Organometallics</i> , 2006 , 25, 4462-4470	3.8	149
226	Au(I)-catalyzed cycloisomerization of 1,5-enynes bearing a propargylic acetate: formation of unexpected bicyclo[3.1.0]hexene. <i>Chemical Communications</i> , 2006 , 2048-50	5.8	133
225	(IPr)Pd(acac)Cl: an easily synthesized, efficient, and versatile precatalyst for C-N and C-C bond formation. <i>Journal of Organic Chemistry</i> , 2006 , 71, 3816-21	4.2	160
224	Modified (NHC)Pd(allyl)Cl (NHC = N-heterocyclic carbene) complexes for room-temperature Suzuki-Miyaura and Buchwald-Hartwig reactions. <i>Journal of the American Chemical Society</i> , 2006 , 128, 4101-11	16.4	769
223	N-Heterocyclic carbenes: Advances in transition metal and organic catalysis. <i>Annual Reports on the Progress of Chemistry Section B</i> , 2006 , 102, 168		17
222	N-Heterocyclic Carbene R uthenium Complexes in Olefin Metathesis 2006 , 1-25		11
221	Ruthenium N-Heterocyclic Carbene Complexes in Organic Transformations (Excluding Metathesis) 2006 , 27-53		4
220	Cross-coupling Reactions Catalyzed by Palladium N-Heterocyclic Carbene Complexes 2006 , 55-72		9
219	Pd-NHC Complexes as Catalysts in Telomerization and Aryl Amination Reactions 2006 , 73-102		9
218	Metal-mediated and -catalyzed Oxidations Using N-Heterocyclic Carbene Ligands 2006 , 103-118		4
217	Efficient and Selective Hydrosilylation of Alkenes and Alkynes Catalyzed by Novel N-Heterocyclic Carbene Pt0 Complexes 2006 , 119-161		7
216	Ni-NHC Mediated Catalysis 2006 , 163-182		6
215	Asymmetric Catalysis with Metal N-Heterocyclic Carbene Complexes 2006 , 183-222		3
214	Chelate and Pincer Carbene Complexes 2006 , 223-239		2
213	The Quest for Longevity and Stability of Iridium-based Hydrogenation Catalysts: N-Heterocyclic Carbenes and Crabtree?s Catalyst 2006 , 241-255		1
212	Cu-, Ag-, and Au-NHC Complexes in Catalysis 2006 , 257-274		4
211	N-Heterocyclic Carbenes as Organic Catalysts 2006 , 275-296		19
2 10	A three-component tandem reductive aldol reaction catalyzed by N-heterocyclic carbene-copper complexes. <i>Organic Letters</i> , 2006 , 8, 6059-62	6.2	76

(2005-2006)

209	Alkane Carbon⊞ydrogen Bond Functionalization with (NHC)MCl Precatalysts (M = Cu, Au; NHC = N-Heterocyclic Carbene). <i>Organometallics</i> , 2006 , 25, 2237-2241	3.8	151
208	A pyridine-containing rutheniumIndenylidene complex: Synthesis and activity in ring-closing metathesis. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 5444-5447	2.3	43
207	Cationic Copper(I) Complexes as Efficient Precatalysts for the Hydrosilylation of Carbonyl Compounds. <i>Organometallics</i> , 2006 , 25, 2355-2358	3.8	143
206	Synthesis, isolation and characterization of cationic gold(I) N-heterocyclic carbene (NHC) complexes. <i>Chemical Communications</i> , 2006 , 2045-7	5.8	99
205	8 Carbene and transition metal-mediated transformations. <i>Annual Reports on the Progress of Chemistry Section B</i> , 2005 , 101, 171		31
204	Interaction of a bulky N-heterocyclic carbene ligand with Rh(I) and Ir(I). Double C-H activation and isolation of bare 14-electron Rh(III) and Ir(III) complexes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3516-26	16.4	264
203	Steric and electronic properties of N-heterocyclic carbenes (NHC): a detailed study on their interaction with Ni(CO)4. <i>Journal of the American Chemical Society</i> , 2005 , 127, 2485-95	16.4	512
202	Synthesis of Well-Defined N-Heterocyclic Carbene Silver(I) Complexes. <i>Organometallics</i> , 2005 , 24, 6301-	-6389	276
201	Simple Synthesis of CpNi(NHC)Cl Complexes (Cp = Cyclopentadienyl; NHC = N-Heterocyclic Carbene). <i>Organometallics</i> , 2005 , 24, 3442-3447	3.8	141
200	Simple (imidazol-2-ylidene)-Pd-acetate complexes as effective precatalysts for sterically hindered Suzuki-Miyaura couplings. <i>Organic Letters</i> , 2005 , 7, 1829-32	6.2	187
199	N-Heterocyclic Carbenes as Activating Ligands for Hydrogenation and Isomerization of Unactivated Olefins. <i>Organometallics</i> , 2005 , 24, 1056-1058	3.8	67
198	Synthesis and Structural Characterization of N-Heterocyclic Carbene Gold(I) Complexes. <i>Organometallics</i> , 2005 , 24, 2411-2418	3.8	409
197	A simple and efficient copper-catalyzed procedure for the hydrosilylation of hindered and functionalized ketones. <i>Journal of Organic Chemistry</i> , 2005 , 70, 4784-96	4.2	176
196	The Use of N-Heterocyclic Carbenes as Ligands in Palladium-Mediated Catalysis. <i>Topics in Organometallic Chemistry</i> , 2005 , 241-278	0.6	32
195	Synthesis of phosphorus esters by transesterification mediated by N-heterocyclic carbenes (NHCs). <i>Chemical Communications</i> , 2005 , 5456-8	5.8	46
194	Suzuki Coupling Reactions 2005 , 59-90		
193	An efficient and mild protocol for the \oplus -arylation of ketones mediated by an (imidazol-2-ylidene)palladium(acetate) system. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 5832-58	340 ³	29
192	Furan- and thiophene-functionalised bis-carbene ligands: Synthesis, silver(I) complexes, and catalysis. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 6133-6142	2.3	23

191	Synthesis and thermochemical study of ligand substitution reactions of aminobis(phosphines), Ph2P(R)NPPh2, with [Me2Pt(COD)]. <i>Inorganica Chimica Acta</i> , 2005 , 358, 2817-2820	2.7	5
190	Efficient synthesis of various acycloalkenyl derivatives of pyrimidine using cross-metathesis and Pd(0) methodologies. <i>Tetrahedron</i> , 2005 , 61, 537-544	2.4	45
189	Metathesis strategy in nucleoside chemistry. <i>Tetrahedron</i> , 2005 , 61, 7067-7080	2.4	50
188	Synthesis of novel (NHC)Pd(acac)Cl complexes (acac=acetylacetonate) and their activity in cross-coupling reactions. <i>Tetrahedron</i> , 2005 , 61, 9716-9722	2.4	93
187	Stabilization of Organometallic Species Achieved by the Use of N-Heterocyclic Carbene (NHC) Ligands. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 1815-1828	2.3	420
186	An electron-deficient iridium(III) dihydride complex capable of intramolecular CH activation. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2512-5	16.4	85
185	A gold catalyst for carbene-transfer reactions from ethyl diazoacetate. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 5284-8	16.4	386
184	An Electron-Deficient Iridium(III) Dihydride Complex Capable of Intramolecular C?H Activation. <i>Angewandte Chemie</i> , 2005 , 117, 2568-2571	3.6	18
183	A Gold Catalyst for Carbene-Transfer Reactions from Ethyl Diazoacetate. <i>Angewandte Chemie</i> , 2005 , 117, 5418-5422	3.6	132
182	Olefin metathesis route to antiviral nucleosides. Current Topics in Medicinal Chemistry, 2005 , 5, 1541-58	3	24
181	Transesterification/Acylation Reactions Catalyzed by Molecular Catalysts. <i>Synthesis</i> , 2004 , 2004, 971-98	5 2 .9	9
180	Synthetic and Structural Studies of (NHC)Pd(allyl)Cl Complexes (NHC = N-heterocyclic carbene). Organometallics, 2004, 23, 1629-1635	3.8	271
179	Cross Metathesis Allowing the Conversion of a Ruthenium Indenylidene Complex into Grubbs' Catalyst. <i>Advanced Synthesis and Catalysis</i> , 2004 , 346, 917-920	5.6	38
178	An industrially viable catalyst system for palladium-catalyzed telomerizations of 1,3-butadiene with alcohols. <i>Chemistry - A European Journal</i> , 2004 , 10, 3891-900	4.8	108
177	An Industrially Viable Catalyst System for Palladium-Catalyzed Telomerizations of 1,3-Butadiene with Alcohols. <i>Chemistry - A European Journal</i> , 2004 , 10, 4661-4661	4.8	2
176	Synthesis of l-cyclopentenyl nucleosides using ring-closing metathesis and palladium-mediated allylic alkylation methodologies. <i>Tetrahedron</i> , 2004 , 60, 8397-8404	2.4	20
175	General and efficient methodology for the SuzukiMiyaura reaction in technical grade 2-propanol. <i>Journal of Organometallic Chemistry</i> , 2004 , 689, 3722-3727	2.3	57
174	Double C-H activation in a Rh-NHC complex leading to the isolation of a 14-electron Rh(III) complex. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5054-5	16.4	103

10 Carbenes: reactivity and catalysis. <i>Annual Reports on the Progress of Chemistry Section B</i> , 2004 , 100, 231-249		51
New strategy for the construction of a monotetrahydrofuran ring in Annonaceous acetogenin based on a ruthenium ring-closing metathesis: application to the synthesis of Solamin. <i>Journal of Organic Chemistry</i> , 2004 , 69, 5770-3	4.2	31
Structure and reactivity of "unusual" N-heterocyclic carbene (NHC) palladium complexes synthesized from imidazolium salts. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5046-7	16.4	345
Complete control of the chemoselectivity in catalytic carbene transfer reactions from ethyl diazoacetate: an N-heterocyclic carbene-Cu system that suppresses diazo coupling. <i>Journal of the American Chemical Society</i> , 2004 , 126, 10846-7	16.4	108
(NHC)CuI (NHC = N-Heterocyclic Carbene) Complexes as Efficient Catalysts for the Reduction of Carbonyl Compounds. <i>Organometallics</i> , 2004 , 23, 1157-1160	3.8	256
Transesterification/Acylation of secondary alcohols mediated by N-heterocyclic carbene catalysts. <i>Journal of Organic Chemistry</i> , 2004 , 69, 209-12	4.2	153
Cross-coupling and dehalogenation reactions catalyzed by (N-heterocyclic carbene)Pd(allyl)Cl complexes. <i>Journal of Organic Chemistry</i> , 2004 , 69, 3173-80	4.2	327
Reactivity of a N-heterocyclic carbene, 1,3-di-(1-adamantyl) imidazol-2-ylidene, with a pseudo-acid: structural characterization of Claisen condensation adduct. <i>Chemical Communications</i> , 2004 , 2890-1	5.8	24
N-Heterocyclic Carbene Palladium Complexes Bearing Carboxylate Ligands and Their Catalytic Activity in the Hydroarylation of Alkynes. <i>Organometallics</i> , 2004 , 23, 3752-3755	3.8	112
Synthesis of Biaryl, Arylamine and Aryl Ketone Compounds Using a Commercially Available Air- and Moisture-Stable Palladium Catalyst. <i>Synthesis</i> , 2003 , 2003, 2590-2592	2.9	1
Recent Developments in the Use of N-Heterocyclic Carbenes: Applications in Catalysis. <i>ACS Symposium Series</i> , 2003 , 323-341	0.4	7
A new route to acyclic nucleosides via palladium-mediated allylic alkylation and cross-metathesis. <i>Tetrahedron Letters</i> , 2003 , 44, 9177-9180	2	17
Straightforward Synthesis of Labeled and Unlabeled Pyrimidine d4Ns via 2?,3?-Diyne seco Analogues through Olefin Metathesis Reactions. <i>European Journal of Organic Chemistry</i> , 2003 , 2003, 666-671	3.2	15
Catalytic activity of Pd(II) and Pd(II)/DAB-R systems for the Heck arylation of olefins. <i>Journal of Organometallic Chemistry</i> , 2003 , 687, 269-279	2.3	107
A Combined Experimental and Theoretical Study Examining the Binding of N-Heterocyclic Carbenes (NHC) to the Cp*RuCl (Cp* = 🖪-C5Me5) Moiety: Insight into Stereoelectronic Differences between Unsaturated and Saturated NHC Ligands. <i>Organometallics</i> , 2003 , 22, 4322-4326	3.8	354
Synthesis, characterization, and catalytic activity of N-heterocyclic carbene (NHC) palladacycle complexes. <i>Organic Letters</i> , 2003 , 5, 1479-82	6.2	263
Synthesis of unprotected and borane-protected cyclic phosphines using Ru- and Mo- based olefin metathesis catalysts. <i>Organic and Biomolecular Chemistry</i> , 2003 , 1, 3820-5	3.9	36
Telomerization of Amines Mediated by Cationic N-Heterocyclic Carbene (NHC) Palladium Complexes. <i>Organometallics</i> , 2003 , 22, 3175-3177	3.8	84
	New strategy for the construction of a monotetrahydrofuran ring in Annonaceous acetogenin based on a nuthenium ring-closing metathesis: application to the synthesis of Solamin. <i>Journal of Organic Chemistry</i> , 2004, 69, 5770-3 Structure and reactivity of "unusual" N-heterocyclic carbene (NHC) palladium complexes synthesized from imidazolium salts. <i>Journal of the American Chemical Society</i> , 2004, 126, 5046-7 Complete control of the chemoselectivity in catalytic carbene transfer reactions from ethyl diazoacetate: an N-heterocyclic carbene-Cu system that suppresses diazo coupling. <i>Journal of the American Chemical Society</i> , 2004, 126, 10846-7 (NHC)Cul (NHC = N-Heterocyclic Carbene) Complexes as Efficient Catalysts for the Reduction of Carbonyl Compounds. <i>Organmentallics</i> , 2004, 23, 1157-1160 Transesterification/Acylation of secondary alcohols mediated by N-heterocyclic carbene catalysts. <i>Journal of Organic Chemistry</i> , 2004, 69, 209-12 Cross-coupling and dehalogenation reactions catalyzed by (N-heterocyclic carbene)Pd(allyl)Cl complexes. <i>Journal of Organic Chemistry</i> , 2004, 69, 3173-80 Reactivity of a N-heterocyclic carbene, 1,3-di-(1-adamantyl) imidazol-2-ylidene, with a pseudo-acid: structural characterization of Claisen condensation adduct. <i>Chemical Communications</i> , 2004, 2890-1 N-Heterocyclic Carbene Palladium Complexes Bearing Carboxylate Ligands and Their Catalytic Activity in the Hydroarylation of Alkynes. <i>Organometallics</i> , 2004, 23, 3752-3755 Synthesis of Biaryl, Arylamine and Aryl Ketone Compounds Using a Commercially Available Air- and Moisture-Stable Palladium Catalyst. <i>Synthesis</i> , 2003, 2003, 2590-2592 Recent Developments in the Use of N-Heterocyclic Carbenes: Applications in Catalysis. <i>ACS Symposium Series</i> , 2003, 323-341 A new route to acyclic nucleosides via palladium-mediated allylic alkylation and cross-metathesis. <i>Tetrahedron Letters</i> , 2003, 44, 9177-9180 Straightforward Synthesis of Labeled and Unlabeled Pyrimidine d4Ns via 22,37-Diyne seco Analogues through Olefin Metathesis R	New strategy for the construction of a monotetrahydrofuran ring in Annonaceous acetogenin based on a ruthenium ring-closing metathesis: application to the synthesis of Solamin. <i>Journal of Organic Chemistry</i> , 2004, 69, 5770-3 Structure and reactivity of "unusual" N-heterocyclic carbene (NHC) palladium complexes synthesized from imidazolium salts. <i>Journal of the American Chemical Society</i> , 2004, 126, 5046-7 16.4 Complete control of the chemoselectivity in catalytic carbene transfer reactions from ethyl diazoacetate: an N-heterocyclic carbene-Cu system that suppresses diazo coupling. <i>Journal of the American Chemical Society</i> , 2004, 126, 10846-7 (NHC)Cul (NHC = N-Heterocyclic Carbene) Complexes as Efficient Catalysts for the Reduction of Carbonyl Compounds. <i>Organometallics</i> , 2004, 23, 1157-1160 Transesterification/Acylation of secondary alcohols mediated by N-heterocyclic carbene catalysts. <i>Journal of Organic Chemistry</i> , 2004, 69, 209-12 Cross-coupling and dehalogenation reactions catalyzed by (N-heterocyclic carbene)Pd(allyl)Cl complexes. <i>Journal of Organic Chemistry</i> , 2004, 69, 3173-80 Reactivity of a N-heterocyclic carbene, 1,3-di-(1-adamantyl) imidazol-2-ylidene, with a pseudo-acid: structural characterization of Claisen condensation adduct. <i>Chemical Communications</i> , 2004, 2890-1 N-Heterocyclic Carbene Palladium Complexes Bearing Carboxylate Ligands and Their Catalytic Activity in the Hydroarylation of Alkynes. <i>Organometallics</i> , 2004, 23, 3752-3755 3.8 N-Heterocyclic Carbene Palladium Camplexes Bearing Carboxylate Ligands and Their Catalytic Activity in the Hydroarylation of Alkynes. <i>Organometallics</i> , 2004, 23, 3752-3755 3.8 Synthesis of Biaryl, Arylamine and Aryl Ketone Compounds Using a Commercially Available Air- and Moisture-Stable Palladium Catalysts. <i>Synthesis</i> , 2003, 2003, 2590-2592 Recent Developments in the Use of N-Heterocyclic Carbenes: Applications in Catalysis. <i>ACS Symposium Series</i> , 2003, 44, 9177-9180 Straightforward Synthesis of Labeled and Unlabeled Pyrimidine d4Ns via

155	A general method for the Suzuki-Miyaura cross-coupling of sterically hindered aryl chlorides: synthesis of di- and tri-ortho-substituted biaryls in 2-propanol at room temperature. <i>Journal of the American Chemical Society</i> , 2003 , 125, 16194-5	16.4	468
154	Binding of Specialty Phosphines to Metals: Synthesis, Structure, and Solution Calorimetry of the Phosphirane Complex [PtMe2(iPrBABAR-Phos)2]. <i>Organometallics</i> , 2003 , 22, 2202-2208	3.8	19
153	Diphosphines possessing electronically different donor groups: synthesis and coordination chemistry of the unsymmetrical Di(N-pyrrolyl)phosphino-functionalized dppm analogue Ph2PCH2P(NC4H4)2. <i>Inorganic Chemistry</i> , 2003 , 42, 7227-38	5.1	15
152	Efficient transesterification/acylation reactions mediated by N-heterocyclic carbene catalysts. Journal of Organic Chemistry, 2003 , 68, 2812-9	4.2	207
151	Structural requirements for the interaction of combretastatins with tubulin: how important is the trimethoxy unit?. <i>Organic and Biomolecular Chemistry</i> , 2003 , 1, 3033-7	3.9	116
150	Stable, three-coordinate Ni(CO)(2)(NHC) (NHC = N-heterocyclic carbene) complexes enabling the determination of Ni-NHC bond energies. <i>Journal of the American Chemical Society</i> , 2003 , 125, 10490-1	16.4	151
149	Synthesis of a hyaluronan neoglycopolymer by ring-opening metathesis polymerization. <i>Chemical Communications</i> , 2003 , 1518-9	5.8	21
148	The Cl2(PCy3)(IMes)Ru(?CHPh) catalyst: olefin metathesis versus olefin isomerization. <i>Journal of Organometallic Chemistry</i> , 2002 , 643-644, 247-252	2.3	107
147	Catalytic cross-coupling reactions mediated by palladium/nucleophilic carbene systems. <i>Journal of Organometallic Chemistry</i> , 2002 , 653, 69-82	2.3	429
146	Structural characterization and catalytic activity of the rhodiumBarbene complex Rh(PPh3)2(IMes)Cl (IMes=bis(1,3-(2,4,6-trimethylphenyl)imidazol-2-ylidene). <i>Journal of Organometallic Chemistry</i> , 2002 , 658, 126-131	2.3	72
145	Efficiency of a ruthenium catalyst in metathesis reactions of sulfur-containing compounds. <i>Organic Letters</i> , 2002 , 4, 1767-70	6.2	86
144	How to insulate a reactive site from a perfluoroalkyl group: photoelectron spectroscopy, calorimetric, and computational studies of long-range electronic effects in fluorous phosphines P((CH(2))(m)(CF(2))(7)CF(3))(3). <i>Journal of the American Chemical Society</i> , 2002 , 124, 1516-23	16.4	69
143	Regio- and stereoselective dimerization of terminal alkynes to enynes catalyzed by a palladium/imidazolium system. <i>Journal of Organic Chemistry</i> , 2002 , 67, 591-3	4.2	98
142	Œffects Involving RhPZ3Compounds. The Quantitative Analysis of Ligand Effects (QALE). <i>Organometallics</i> , 2002 , 21, 2758-2763	3.8	51
141	Improved One-Pot Synthesis of Second-Generation Ruthenium Olefin Metathesis Catalysts. <i>Organometallics</i> , 2002 , 21, 442-444	3.8	56
140	Well-defined, air-stable (NHC)Pd(Allyl)Cl (NHC = N-heterocyclic carbene) catalysts for the arylation of ketones. <i>Organic Letters</i> , 2002 , 4, 4053-6	6.2	213
139	N-heterocyclic carbenes as versatile nucleophilic catalysts for transesterification/acylation reactions. <i>Organic Letters</i> , 2002 , 4, 3583-6	6.2	313
138	Activation and Reactivity of (NHC)Pd(allyl)Cl (NHC = N-Heterocyclic Carbene) Complexes in Cross-Coupling Reactions. <i>Organometallics</i> , 2002 , 21, 5470-5472	3.8	318

(2001-2002)

137	SuzukiMiyaura Cross-Coupling Reactions Mediated by Palladium/Imidazolium Salt Systems. <i>Organometallics</i> , 2002 , 21, 2866-2873	3.8	299
136	An air-stable palladium/N-heterocyclic carbene complex and its reactivity in aryl amination. <i>Organic Letters</i> , 2002 , 4, 2229-31	6.2	212
135	Preparation and Activity of Recyclable Polymer-Supported Ruthenium Olefin Metathesis Catalysts. <i>Organometallics</i> , 2002 , 21, 671-679	3.8	77
134	Efficient Sonogashira Reactions of Aryl Bromides with Alkynylsilanes Catalyzed by a Palladium/Imidazolium Salt System. <i>Organometallics</i> , 2002 , 21, 1020-1022	3.8	108
133	Development of olefin metathesis catalyst precursors bearing nucleophilic carbene ligands. <i>Journal of Organometallic Chemistry</i> , 2001 , 617-618, 17-27	2.3	93
132	A Highly Efficient Palladium/Imidazolium Salt System for Catalytic Heck Reactions. <i>Synlett</i> , 2001 , 2001, 1539-1542	2.2	36
131	Highly efficient Heck reactions of aryl bromides with n-butyl acrylate mediated by a palladium/phosphine-imidazolium salt system. <i>Organic Letters</i> , 2001 , 3, 1511-4	6.2	230
130	Amination reactions of aryl halides with nitrogen-containing reagents mediated by palladium/imidazolium salt systems. <i>Journal of Organic Chemistry</i> , 2001 , 66, 7729-37	4.2	302
129	From carbohydrates to polyoxygenated cyclooctenes via ring-closing metathesis. <i>Journal of Organic Chemistry</i> , 2001 , 66, 4094-6	4.2	42
128	Convenient and efficient Suzuki-Miyaura cross-coupling catalyzed by a palladium/diazabutadiene system. <i>Organic Letters</i> , 2001 , 3, 1077-80	6.2	235
127	On the origin of selective nitrous oxide N-N bond cleavage by three-coordinate molybdenum(III) complexes. <i>Journal of the American Chemical Society</i> , 2001 , 123, 7271-86	16.4	110
126	Cationic Iridium Complexes Bearing Imidazol-2-ylidene Ligands as Transfer Hydrogenation Catalysts. <i>Organometallics</i> , 2001 , 20, 4246-4252	3.8	191
125	Catalytic Hydrogenation of Alkenes by the Ruthenium (Tarbene Complex HRu(CO)Cl(PCy3)(IMes) (IMes = Bis(1,3-(2,4,6-trimethylphenyl)imidazol-2-ylidene). <i>Organometallics</i> , 2001 , 20, 794-797	3.8	105
124	Synthetic and solution calorimetric investigations of chelating phosphine ligands in Ru(allyl)2(PP) complexes (PP = diphosphine). <i>Canadian Journal of Chemistry</i> , 2001 , 79, 626-631	0.9	6
123	Triple ring closing metathesis reaction: synthesis of adjacent cyclic ethers. <i>Organic Letters</i> , 2001 , 3, 198	89 @ 1	30
122	Structural and Thermochemical Studies of Chiral Nucleophilic Carbenes in the Cp*RuCl(L*) (Cp* = B-C5Me5; L* = Chiral Nucleophilic Carbene) System. <i>Organometallics</i> , 2001 , 20, 2878-2882	3.8	58
121	Palladium/imidazolium salt catalyzed coupling of aryl halides with hypervalent organostannates. <i>Organic Letters</i> , 2001 , 3, 119-22	6.2	143
120	Catalytic Dehalogenation of Aryl Halides Mediated by a Palladium/Imidazolium Salt System. <i>Organometallics</i> , 2001 , 20, 3607-3612	3.8	154

119	A Cationic Iridium Complex Bearing an Imidazol-2-ylidene Ligand as Alkene Hydrogenation Catalyst. <i>Organometallics</i> , 2001 , 20, 1255-1258	3.8	137
118	Synthetic and thermochemical studies of fluorinated tertiary phosphine ligands R2PRf [R=Cy, Ph, iPr; Rf=CH2CH2(CF2)5CF3] in an organoiron system. <i>Inorganica Chimica Acta</i> , 2000 , 300-302, 987-991	2.7	2
117	A sterically demanding nucleophilic carbene: 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). Thermochemistry and catalytic application in olefin metathesis. <i>Journal of Organometallic Chemistry</i> , 2000 , 606, 49-54	2.3	280
116	Ruthenium(II) chemistry of phosphorus-based ligands, Ph2PN(R)PPh2 (R=Me or Ph) and Ph2PN(Ph)P(E) Ph2 (E=S or Se). Solution thermochemical study of ligand substitution reactions in the Cp?RuCl(COD) (Cp?=Cp, Cp*; COD=cyclooctadiene) system. <i>Journal of Organometallic Chemistry</i> ,	2.3	36
115	Synthesis of BC Ring-Systems of Taxol by Ring-Closing Metathesis. <i>Synthesis</i> , 2000 , 2000, 869-882	2.9	44
114	Simply assembled and recyclable polymer-supported olefin metathesis catalysts. <i>Organic Letters</i> , 2000 , 2, 4075-8	6.2	80
113	Simple and Convenient Synthetic Procedure Leading to Ruthenium Olefin Metathesis Catalysts Bearing the N,NEBis(mesityl)imidazol-2-ylidene (IMes) Ligand. <i>Organometallics</i> , 2000 , 19, 2055-2057	3.8	74
112	Structural and solution calorimetric studies of sulfur binding to nucleophilic carbenes. <i>Inorganic Chemistry</i> , 2000 , 39, 1042-5	5.1	39
111	Enhanced regioselectivity of rhodium-catalysed alkene hydroboration in supercritical carbon dioxide. <i>Chemical Communications</i> , 2000 , 347-348	5.8	44
110	Assessing the stereoelectronic properties of pyrrolyl phosphines and related ligands. The quantitative analysis of ligand effects (QALE). <i>Perkin Transactions II RSC</i> , 2000 , 1349-1357		19
	Synthesis of macrolide analogues of sanglifehrin by RCM: unique reactivity of a ruthenium carbene		
109	complex bearing an imidazol-2-ylidene ligand. Ring-closing metathesis. <i>Journal of Organic Chemistry</i> , 2000 , 65, 9255-60	4.2	46
109	complex bearing an imidazol-2-ylidene ligand. Ring-closing metathesis. Journal of Organic Chemistry	4.2 6.2	179
	complex bearing an imidazol-2-ylidene ligand. Ring-closing metathesis. <i>Journal of Organic Chemistry</i> , 2000 , 65, 9255-60 Efficient cross-coupling reactions of aryl chlorides and bromides with phenyl- or vinyltrimethoxysilane mediated by a Palladium/Imidazolium chloride system. <i>Organic Letters</i> , 2000 ,	ŕ	
108	complex bearing an imidazol-2-ylidene ligand. Ring-closing metathesis. <i>Journal of Organic Chemistry</i> , 2000 , 65, 9255-60 Efficient cross-coupling reactions of aryl chlorides and bromides with phenyl- or vinyltrimethoxysilane mediated by a Palladium/Imidazolium chloride system. <i>Organic Letters</i> , 2000 , 2, 2053-5 Synthetic, Structural, and Solution Calorimetric Studies of Pt(CH3)2(PP) Complexes	6.2	179
108	complex bearing an imidazol-2-ylidene ligand. Ring-closing metathesis. <i>Journal of Organic Chemistry</i> , 2000 , 65, 9255-60 Efficient cross-coupling reactions of aryl chlorides and bromides with phenyl- or vinyltrimethoxysilane mediated by a Palladium/Imidazolium chloride system. <i>Organic Letters</i> , 2000 , 2, 2053-5 Synthetic, Structural, and Solution Calorimetric Studies of Pt(CH3)2(PP) Complexes <i>Organometallics</i> , 2000 , 19, 1427-1433 Effect of Ancillary Ligation on the Relative Bond Disruption Enthalpies of Rull and Rull Bonds in	6.2	179
108 107 106	complex bearing an imidazol-2-ylidene ligand. Ring-closing metathesis. <i>Journal of Organic Chemistry</i> , 2000 , 65, 9255-60 Efficient cross-coupling reactions of aryl chlorides and bromides with phenyl- or vinyltrimethoxysilane mediated by a Palladium/Imidazolium chloride system. <i>Organic Letters</i> , 2000 , 2, 2053-5 Synthetic, Structural, and Solution Calorimetric Studies of Pt(CH3)2(PP) Complexes <i>Organometallics</i> , 2000 , 19, 1427-1433 Effect of Ancillary Ligation on the Relative Bond Disruption Enthalpies of Ru and R	6.2 3.8 3.8	179 43
108 107 106	complex bearing an imidazol-2-ylidene ligand. Ring-closing metathesis. <i>Journal of Organic Chemistry</i> , 2000 , 65, 9255-60 Efficient cross-coupling reactions of aryl chlorides and bromides with phenyl- or vinyltrimethoxysilane mediated by a Palladium/Imidazolium chloride system. <i>Organic Letters</i> , 2000 , 2, 2053-5 Synthetic, Structural, and Solution Calorimetric Studies of Pt(CH3)2(PP) Complexes <i>Organometallics</i> , 2000 , 19, 1427-1433 Effect of Ancillary Ligation on the Relative Bond Disruption Enthalpies of Rull and Rull Bonds in Cp(PR3)2RuX (PR3= PMe3, PMe2Ph, PMePh2, PPh3; X = H, Cl). <i>Organometallics</i> , 2000 , 19, 4828-4833 Studies of the synthesis and thermochemistry of coordinatively unsaturated chelate complexes (eta 5-C5Me5)IrL2 (L2 = TsNCH2CH2NTs, TsNCH2CO2, CO2CO2). <i>Inorganic Chemistry</i> , 2000 , 39, 2493-9 A modular synthetic approach toward exhaustively stereodiversified ligand libraries. <i>Organic</i>	6.2 3.8 3.8	179 43 13

101	Ruthenium carbene complexes with N,N'-bis(mesityl)imidazol-2-ylidene ligands: RCM catalysts of extended scope. <i>Journal of Organic Chemistry</i> , 2000 , 65, 2204-7	4.2	393
100	Improvement in olefin metathesis using a new generation of ruthenium catalyst bearing an imidazolylidene ligand: synthesis of heterocycles. <i>Organic Letters</i> , 2000 , 2, 1517-9	6.2	95
99	Investigations into the roller electrical motor. <i>Journal Physics D: Applied Physics</i> , 1999 , 32, 741-748	3	
98	Solution thermochemical study of ligand substitution reactions of hybrid alkyl/fluoroalkoxy phosphorus ligands in the L2Fe(CO)3 system. <i>Inorganica Chimica Acta</i> , 1999 , 291, 32-38	2.7	6
97	Olefin Metathesis-Active Ruthenium Complexes Bearing a Nucleophilic Carbene Ligand. <i>Journal of the American Chemical Society</i> , 1999 , 121, 2674-2678	16.4	876
96	(p-cymene)RuLCl2 (L = 1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene and 1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene) and Related Complexes as Ring Closing Metathesis Catalysts. <i>Organometallics</i> , 1999 , 18, 3760-3763	3.8	112
95	Influence of Sterically Demanding Carbene Ligation on Catalytic Behavior and Thermal Stability of Ruthenium Olefin Metathesis Catalysts. <i>Organometallics</i> , 1999 , 18, 5375-5380	3.8	211
94	PalladiumImidazol-2-ylidene Complexes as Catalysts for Facile and Efficient Suzuki Cross-Coupling Reactions of Aryl Chlorides with Arylboronic Acids. <i>Journal of Organic Chemistry</i> , 1999 , 64, 3804-3805	4.2	440
93	A thermodynamic method based on isoequilibrium behavior to determine the values of stereoelectronic parameters of phosphines. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1999 , 2631-2639		10
92	IndenylideneImidazolylidene Complexes of Ruthenium as Ring-Closing Metathesis Catalysts. <i>Organometallics</i> , 1999 , 18, 5416-5419	3.8	192
91	Coordinatively Unsaturated 16-Electron Ruthenium Allenylidene Complexes: Synthetic, Structural, and Catalytic Studies. <i>Organometallics</i> , 1999 , 18, 5187-5190	3.8	110
90	General and Efficient Catalytic Amination of Aryl Chlorides Using a Palladium/Bulky Nucleophilic Carbene System. <i>Organic Letters</i> , 1999 , 1, 1307-1309	6.2	213
89	Correlation between Structural and Solution Calorimetric Data for Cp*Ru(PR3)2Cl (Cp* = C5Me5) Complexes. <i>Organometallics</i> , 1999 , 18, 2357-2361	3.8	21
88	Lewis Acids Accelerate Reductive Elimination of RCN from P2Pd(R)(CN). Organometallics, 1999 , 18, 297	-399	64
87	Synthetic, Thermochemical, and Catalytic Studies of Fluorinated Tertiary Phosphine Ligands R2PRf [R = Cy, Ph, iPr; Rf = CH2CH2(CF2)5CF3] in Rhodium Systems. <i>Inorganic Chemistry</i> , 1999 , 38, 5277-5281	5.1	28
86	Synthetic, Structural, and Solution Thermochemical Studies in the Dimethylbis(phosphine)platinum(II) System. Dichotomy between Structural and Thermodynamic Trends. <i>Organometallics</i> , 1999 , 18, 474-479	3.8	53
85	Catalytic Dehalogenation of Aryl Chlorides Mediated by Ruthenium(II) Phosphine Complexes. Organometallics, 1999 , 18, 1299-1304	3.8	67
84	Efficient Cross-Coupling of Aryl Chlorides with Aryl Grignard Reagents (Kumada Reaction) Mediated by a Palladium/Imidazolium Chloride System. <i>Journal of the American Chemical Society</i> , 1999 , 121, 9889-9890	16.4	322

83	Stereoelectronic Effects Characterizing Nucleophilic Carbene Ligands Bound to the Cp*RuCl (Cp* = B-C5Me5) Moiety: A Structural and Thermochemical Investigation. <i>Organometallics</i> , 1999 , 18, 2370-23	75 ^{3.8}	273
82	Synthetic and thermochemical studies of reactions of the 16-electron ruthenium complex [(Ph2PNMeNMePPh2)2RuCl]BF4 with H2, CH3CN and CO. <i>Journal of Organometallic Chemistry</i> , 1998, 571, 205-213	2.3	10
81	Thermodynamics of Addition of H2, CO, N2, and CH Bonds to M(PiPr3)2Cl (M = Ir, Rh). An Unprecedented MetalCarbonyl Bond Strength. <i>Journal of the American Chemical Society</i> , 1998 , 120, 9256-9266	16.4	27
80	Enthalpies of Reaction of CpRu(COD)Cl (CpD C5H5, C5Me5; COD = Cyclooctadiene) with EAcceptor Chelating Phosphine Ligands. <i>Organometallics</i> , 1998 , 17, 3000-3005	3.8	16
79	Enthalpies of Reaction of [(p-cymene)OsCl2]2 with Monodentate Tertiary Phosphine Ligands. Importance of Steric and Electronic Ligand Factors in an Osmium(II) System. <i>Organometallics</i> , 1998 , 17, 4004-4008	3.8	11
78	Thermodynamics of Phosphine Coordination to the [PNP]RhI Fragment: An Example of the Importance of Reorganization Energies in the Assessment of Metalligand B ond Strengths <i>Journal of the American Chemical Society</i> , 1998 , 120, 7806-7815	16.4	30
77	Solution Thermochemical Study of a Fluorous Tertiary Phosphine Ligand in Rhodium and Ruthenium Systems. <i>Organometallics</i> , 1998 , 17, 452-456	3.8	24
76	Terminal Platinum(II) Phosphido Complexes: Synthesis, Structure, and Thermochemistry. <i>Organometallics</i> , 1998 , 17, 652-660	3.8	38
75	Solution Calorimetric Investigation of Oxidative Addition of HEAr (E = O, S, Se; Ar = C6H4X, X = CH3, H, Cl, NO2) to (PMe3)4Ru(C2H4): Relationship between HEAr Acidity and Enthalpy of Reaction ☐ Organometallics, 1998, 17, 3516-3521	3.8	19
74	Four-Coordinate Molybdenum Chalcogenide Complexes Relevant to Nitrous Oxide NN Bond Cleavage by Three-Coordinate Molybdenum(III): Synthesis, Characterization, Reactivity, and Thermochemistry. <i>Journal of the American Chemical Society</i> , 1998 , 120, 2071-2085	16.4	101
73	Synthetic, Thermochemical, and Catalytic Studies Involving Novel R2P(ORf) [R = Alkyl or Aryl; Rf = CH2CH2(CF2)5CF3] Ligands. <i>Organometallics</i> , 1998 , 17, 5018-5024	3.8	43
72	Thermochemical Investigation of Phosphine Ligand Substitution Reactions Involving trans-(PR3)2Cl2RuCHICHCPh2 Complexes. <i>Organometallics</i> , 1998 , 17, 5565-5568	3.8	33
71	Solution Thermochemical and Structural Studies of Ligand Substitution of N-Pyrrolyl Phosphine Ligands in the (p-cymene)RuCl2(PR3) System. <i>Organometallics</i> , 1998 , 17, 104-110	3.8	21
70	Solution Thermochemical Study of Tertiary Phosphine Ligand Substitution Reactions in the Rh(acac)(CO)(PR3) System. <i>Organometallics</i> , 1998 , 17, 534-539	3.8	49
69	Synthesis and Reactivity of the Ruthenium(II) Dihydride Ru(Ph2PNMeNMePPh2)2H2. Organometallics, 1998 , 17, 3875-3882	3.8	23
68	Convenient Synthesis of Ruthenium(II) Dihydride Phosphine Complexes Ru(H)2(PP)2 and Ru(H)2(PR3)x (x = 3 and 4). Organometallics, 1997 , 16, 5569-5571	3.8	49
67	Monomeric Cyclopentadienylnickel Methoxo and Amido Complexes: Synthesis, Characterization, Reactivity, and Use for Exploring the Relationship between HIX and MIX Bond Energies. <i>Journal of the American Chemical Society</i> , 1997 , 119, 12800-12814	16.4	110
66	N-Pyrrolyl Phosphines: Enhanced FAcceptor Character via Carboalkoxy Substitution. Organometallics, 1997, 16, 3377-3380	3.8	22

65	Ligand (L) Influence on CO Binding Enthalpies to Ru(CO)2L2. Organometallics, 1997, 16, 4223-4225	3.8	11
64	Synthesis, Characterization, and Catalytic Behavior of Ruthenium(II) Schiff Base Complexes. <i>Organometallics</i> , 1997 , 16, 5120-5123	3.8	39
63	Regioselective synthesis of B-(N-methoxycarbonyl-7-azabicyclo[2.2.1]he ta-2,5-dienyl)-B-(C5Me5)RuCl complexes. <i>Journal of Organometallic Chemistry</i> , 1997 , 533, 25-30	2.3	1
62	Thermochemistry of Oxygen Atom Transfer from Cp*ReO3. <i>Organometallics</i> , 1996 , 15, 5250-5251	3.8	15
61	Synthesis, Characterization, and Catalytic Behavior of a Ruthenium(II) Tetraazaannulene Complex. <i>Inorganic Chemistry</i> , 1996 , 35, 252-254	5.1	5
60	Organoruthenium Thermochemistry. Enthalpies of Reaction of Cp R u(COD)Cl (Cpl B -C5H5 and B -C5Me5) with Tertiary Phosphite Ligands. <i>Organometallics</i> , 1996 , 15, 5209-5215	3.8	18
59	Relative Binding Energies of Tertiary Phosphine Ligands to the Cp*RuOCH2CF3 (Cp* = 🖪-C5Me5) Moiety. <i>Organometallics</i> , 1996 , 15, 3456-3462	3.8	12
58	Solution Thermochemical and Structural Studies of Ligand Substitution of N-Pyrrolyl-Substituted Phosphine Ligands in the CpRu(PR3)2Cl (CpI B-C5H5 and B-C5Me5) Systems. <i>Organometallics</i> , 1996 , 15, 4020-4029	3.8	13
57	Estimating the Effective Steric Impact of PtBu2Me, PiPr3, and PCy3. Organometallics, 1996, 15, 4900-4	90 38	21
56	Synthesis and ligand binding of eta(6)-(2beta-carbomethoxy-3beta-phenyltropane) transition metal complexes. <i>Journal of Medicinal Chemistry</i> , 1996 , 39, 1560-3	8.3	14
55	Solution Thermochemical Study of Tertiary Phosphine Ligand Substitution Reactions in the RhCl(CO)(PR3)2System. <i>Organometallics</i> , 1996 , 15, 4301-4306	3.8	45
54	Solution thermochemical study of ligand substitution reaction of novel pyrrolyl-substituted tertiary phosphine ligands in the L2Fe(CO)3 system. <i>Inorganica Chimica Acta</i> , 1996 , 252, 107-113	2.7	17
53	Solution Thermochemistry of Ligand Substitution Reactions Involving Organoruthenium Complexes. <i>Comments on Inorganic Chemistry</i> , 1995 , 17, 131-162	3.9	8
52	Thermodynamics of Addition of CO, Isocyanide, and H2 to Rh(PR3)2Cl. <i>Journal of the American Chemical Society</i> , 1995 , 117, 5082-5088	16.4	27
51	Enthalpies of Reaction of Cp'Ru(COD)Cl (Cp' = C5H5, C5Me5; COD = Cyclooctadiene) with P(p-XC6H4)3 (X = Cl, F, H, CH3, CF3, OCH3) Ligands: Ligand Steric vs Electronic Contributions to the Enthalpy of Reaction. <i>Organometallics</i> , 1995 , 14, 5290-5297	3.8	32
50	Solution Thermochemical Study of Ligand Steric Influences on Substitution Enthalpies in the L2Fe(CO)3 System. <i>Organometallics</i> , 1995 , 14, 3791-3797	3.8	16
49	Organoiron Thermochemistry. Solution Thermochemical Investigation of Tertiary Phosphine Ligand Electronic Effects in trans-(P(p-XC6H4)3)2Fe(CO)3 Complexes. <i>Organometallics</i> , 1995 , 14, 1327-1332	3.8	18
48	Thermodynamic Studies of the Addition of N2, C2H4, and Alkynes to [Rh(PiPr3)2Cl]2. Organometallics, 1995 , 14, 4010-4013	3.8	8

47	Organoruthenium Thermochemistry. Absolute Metal-Ligand Bond Disruption Enthalpies in the (.eta.5-C5Me5)(CO)2Ru-X System (X = H, Cl, Br, I) and Thermodynamic Influences of Ancillary Ligand Variation on the Ru-X Bond Disruption Enthalpy. <i>Organometallics</i> , 1995 , 14, 1333-1338	3.8	17
46	Addition of Aldehydes and Acyl Chlorides to $[Rh(PiPr3)2Cl]2$. Thermodynamics and Molecular and Crystal Structures of $Rh(PiPr3)2ClX[C(O)Ph]$ (X = H, Cl). Organometallics, 1995 , 14, 4929-4936	3.8	42
45	Enthalpies of Reaction of (.eta.5-C5H5)Ru(cyclooctadiene)Cl with Tertiary Phosphine Ligands: Ligand Substitution as a Gauge for Metal Basicity and A Linear Correlation of Bond Length and Bond Enthalpy. <i>Organometallics</i> , 1995 , 14, 289-296	3.8	26
44	Enthalpies of Reaction of ((p-cymene)RuCl2)2 with Monodentate Tertiary Phosphine Ligands. Importance of Both Steric and Electronic Ligand Factors in a Ruthenium(II) System. <i>Organometallics</i> , 1995 , 14, 4611-4616	3.8	46
43	Heats of reaction of HMo(CO)3(C5R5) (R = H, CH3) with diphenyldisulfide and of formation of the clusters [PhSMo(CO)x(C5H5)]2, $x = 1,2$. Thermodynamic study of molybdenum-sulfur bond strengths. <i>Inorganica Chimica Acta</i> , 1995 , 240, 175-182	2.7	8
42	Relative Binding Energies of Sterically Demanding Tertiary Phosphine Ligands to the Cp*RuCl (Cp* = .eta.5-C5Me5) Moiety. Thermochemical Investigation of Coordinatively Unsaturated Organoruthenium Complexes. <i>Organometallics</i> , 1994 , 13, 4781-4786	3.8	34
41	Direct solution calorimetric measurements of enthalpies of proton and electron transfer reactions for transition metal complexes. Thermochemical study of metal-hydride and metal-metal bond energies. <i>Inorganica Chimica Acta</i> , 1994 , 227, 285-292	2.7	10
40	Electrochemical oxidation and nucleophilic addition reactions of metallocenes in electrospray mass spectrometry. <i>Analytical Chemistry</i> , 1994 , 66, 119-125	7.8	109
39	Synthesis of (.eta.5-C5Me5)Ru(.eta.6-tryptamine)(CF3SO3) Complexes. Chemospecific .eta.6 Coordination of the (.eta.5-C5Me5)Ru+ Moiety. <i>Organometallics</i> , 1994 , 13, 676-681	3.8	18
38	Enthalpies of reaction of ruthenium complex Cp*Ru(COD)Cl (Cp* = .eta.5-C5Me5; COD = cyclooctadiene) with chelating tertiary phosphine ligands. Solution thermochemical investigation of ligand substitution and ring strain energies in Cp*Ru(PP)Cl complexes. <i>Organometallics</i> , 1994 , 13, 66	3.8 69-675	28
37	Enthalpies of Reaction of CpRu(COD)Cl (Cp = .eta.5-C5H5; COD = Cyclooctadiene) with Chelating Tertiary Phosphine Ligands. Solution Thermochemical Investigation of Ligand Substitution and Ring Strain Energies in CpRu(R2P(CH2)nPR2)Cl Complexes. <i>Organometallics</i> , 1994 , 13, 3621-3627	3.8	26
36	First Transition Metal-Boryl Bond Energy and Quantitation of Large Differences in Sequential Bond Dissociation Energies of Boranes. <i>Journal of the American Chemical Society</i> , 1994 , 116, 4121-4122	16.4	64
35	Enthalpies of reaction of (diene)- and (enone)iron tricarbonyl complexes with monodentate and bidentate ligands. Solution thermochemical study of ligand substitution in the L2Fe(CO)3 complexes. <i>Inorganic Chemistry</i> , 1993 , 32, 2410-2415	5.1	26
34	Alkyne coupling reactions mediated by organolanthanides. Probing the mechanism by metal and alkyne variation. <i>Organometallics</i> , 1993 , 12, 3618-3623	3.8	60
33	Organoruthenium thermochemistry. Enthalpies of reaction of (Cp*RuCl)4 and Cp*Ru(COD)Cl (Cp* = .eta.5-C5Me5, COD = cyclooctadiene) with dienes and tertiary phosphine ligands. <i>Organometallics</i> , 1993 , 12, 4305-4311	3.8	21
32	Synthesis, thermochemistry, and structural characterization of organoruthenium arene and triene complexes. <i>Structural Chemistry</i> , 1993 , 4, 367-375	1.8	10
31	Enthalpies of reaction of (benzylideneacetone)iron tricarbonyl, (BDA)Fe(CO)3, with phosphine ligands. Thermodynamic insights into iron chemistry. <i>Organometallics</i> , 1992 , 11, 3483-3486	3.8	20
30	Synthesis and structural characterization of a tetranuclear organolanthanide hydrazido complex. <i>Organometallics</i> , 1992 , 11, 1011-1013	3.8	28

(1986-1992)

29	Heats of the reactions of tricarbonyl(naphthalene)chromium, tricarbonyl(cycloheptatriene)chromium, tricarbonyl(cycloheptatriene)tungsten, and tricarbonyltris(ethylcyanide)tungsten with pyridine, phosphines, phosphites, and other ligands.	5.1	31
28	Enthalpies of reaction of ruthenium complex Cp*Ru(CH3CN)3+O3SCF3- (Cp* = .eta.5-C5Me5) with arenes. Solution thermochemical study of arene binding to the Cp*Ru+ fragment. <i>Organometallics</i> , 1992, 11, 3947-3953	3.8	51
27	Synthesis and characterization of an organoyttrium dimer produced via an Arbuzov dealkylation reaction. <i>Organometallics</i> , 1992 , 11, 3459-3462	3.8	11
26	Organo-f-Element Thermochemistry. Implications for Reactivity and Bonding from Metal-Ligand Bonding Energetics 1992 , 35-51		17
25	Organolanthanide-catalyzed dehydrogenative coupling of silanes. Mechanistic implications. <i>Organometallics</i> , 1991 , 10, 2543-2545	3.8	88
24	Organo-f-element thermochemistry. Actinide-Group 14 element and actinide-transition-element bond disruption enthalpies and stoichiometric/catalytic chemical implications thereof in heterobimetallic tris(cyclopentadienyl)uranium(IV) compounds. <i>Organometallics</i> , 1991 , 10, 1450-1457	3.8	97
23	Metal and Ancillary Coordination Effects on Organolanthanidelligand Bond Enthalpies. <i>ACS Symposium Series</i> , 1990 , 159-174	0.4	22
22	Organolanthanide-centered hydroamination/cyclization of aminoolefins. Expedient oxidative access to catalytic cycles. <i>Organometallics</i> , 1990 , 9, 1716-1718	3.8	128
21	Spectroscopic detection of organolanthanide dihydrogen and olefin complexes. <i>Journal of the American Chemical Society</i> , 1989 , 111, 8538-8540	16.4	41
20	Organo-f-element thermochemistry. Absolute metal-ligand bond disruption enthalpies in bis(pentamethylcyclopentadienyl)samarium hydrocarbyl, hydride, dialkylamide, alkoxide, halide, thiolate, and phosphide complexes. Implications for organolanthanide bonding and reactivity.	16.4	165
19	What can metal-ligand bonding energetics teach us about stoichiometric and catalytic organometallic chemistry?. <i>Pure and Applied Chemistry</i> , 1989 , 61, 1665-1672	2.1	39
18	The thermodynamic driving force for C?H activation at iridium. <i>Polyhedron</i> , 1988 , 7, 1429-1440	2.7	63
17	The heat of reaction of Et?Mo(CO)3C5H5 and H?Mo(CO)3C5H5 and related reactions. Thermochemical study of reductive elimination in alkyl molybdenum complexes. <i>Polyhedron</i> , 1988 , 7, 1491-1498	2.7	13
16	Thermodynamic and kinetic studies of the complexes W(CO)3(PCy3)2L (L = H2, N2, NCCH3, pyridine, P(OMe)3, CO). <i>Organometallics</i> , 1988 , 7, 2429-2435	3.8	59
15	Heat of reaction of (norbornadiene)molybdenum tetracarbonyl with monodentate and bidentate ligands. Solution thermochemical study of ligand substitution in the complexes cis-L2Mo(CO)4. <i>Inorganic Chemistry</i> , 1988 , 27, 81-85	5.1	48
14	Heats of reaction of Cp(PMe3)Ir(R)(H) (R = C6H5, C6H11, H) with HCl, CCl4, CBr4, and MeI. A solution thermochemical study of the C-H insertion reaction. <i>Journal of the American Chemical Society</i> , 1987 , 109, 3143-3145	16.4	71
13	Rhodium alkoxide complexes. Formation of an unusually strong intermolecular hydrogen bond in (PMe3)3Rh-Otol(HOtol). <i>Journal of the American Chemical Society</i> , 1987 , 109, 6563-6565	16.4	107
12	Heats of reaction of HMo(CO)3C5H5 with CCl4 and CBr4 and of NaMo(CO)3C5H5 with I2 and CH3. Solution thermochemical study of the Mo?X bond for X = H, Cl, Br, I and CH3. <i>Journal of Organometallic Chemistry</i> , 1986 , 315, 187-199	2.3	10

11	Heats of reaction of [Mo(CO)2Cp*]2 (Cp* = C5H5, C5Me5, C9H7) with carbon monoxide, acetylene, and phenylacetylene. Thermochemical investigation of the molybdenum-molybdenum triple bond. <i>Inorganic Chemistry</i> , 1986 , 25, 4446-4448	5.1	21
10	Heats of reaction of RMo(CO)3C5H5 (R = H, Me, Et) with phosphines and phosphites: thermodynamic study of the carbonyl-insertion reaction. <i>Inorganic Chemistry</i> , 1986 , 25, 1160-1165	5.1	16
9	Heats of reaction of (toluene)molybdenum tricarbonyl with substituted arenes, sodium cyclopentadienide, nitriles, isocyanides, and other ligands. Solution thermodynamic study of ligand exchange in the complexes fac-L3Mo(CO)3. <i>Organometallics</i> , 1986 , 5, 2529-2537	3.8	45
8	Thermochemical study of the Lewis acid promoted carbonyl insertion reaction. <i>Journal of the American Chemical Society</i> , 1986 , 108, 7852-3	16.4	14
7	Synthesis and thermochemistry of HMo(CO)3C5Me5; Comparison of cyclopentadienyl and pentamethylcyclopentadienyl ligands. <i>Journal of Organometallic Chemistry</i> , 1985 , 282, 357-362	2.3	57
6	The heats of reaction of phosphines and phosphites with toluene-molybdenum tricarbonyl. Importance of both steric and electronic factors in determining the Mo?PR3 bond strength. <i>Journal of Organometallic Chemistry</i> , 1985 , 290, 365-373	2.3	31
5	Arylation Reactions of Alkynes: The Sonogashira Reaction183-220		11
4	A Simple Synthetic Route to Well-Defined [Pd(NHC)Cl(1-tBu-indenyl)] Pre-catalysts for Cross-Coupling Reactions. <i>European Journal of Inorganic Chemistry</i> ,	2.3	1
3	CHAPTER 4:Advances in CII and CII Coupling Using Palladium III-Heterocyclic Carbene (Pd IIIHC) Complexes. <i>RSC Catalysis Series</i> ,139-227	0.3	4
2	Defluorinative [4 + 1] annulation of perfluoroalkyl N-mesylhydrazones with primary amines provides 5-fluoroalkyl 1,2,3-triazoles. <i>Green Chemistry</i> ,	10	3
1	Synthesis of Insaturated Esters and Amides via Au(I)-Catalyzed Reactions of Aryl Ynol Ethers or Ynamides with Allylic Alcohols. <i>Synthesis</i> ,	2.9	1