
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1927857/publications.pdf Version: 2024-02-01

ROSSELLA CALL

#	Article	IF	CITATIONS
1	CRISPR-based gene disruption and integration of high-avidity, WT1-specific T cell receptors improve antitumor T cell function. Science Translational Medicine, 2022, 14, eabg8027.	12.4	21
2	Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours. Nature Nanotechnology, 2021, 16, 820-829.	31.5	36
3	MicroRNA Expression Profile Distinguishes Glioblastoma Stem Cells from Differentiated Tumor Cells. Journal of Personalized Medicine, 2021, 11, 264.	2.5	12
4	Imaging Metformin Efficacy as Add-On Therapy in Cells and Mouse Models of Human EGFR Glioblastoma. Frontiers in Oncology, 2021, 11, 664149.	2.8	8
5	mTORC1 promotes malignant large cell/anaplastic histology and is a targetable vulnerability in SHH-TP53 mutant medulloblastoma. JCI Insight, 2021, 6, .	5.0	3
6	Enhanced SPARCL1 expression in cancer stem cells improves preclinical modeling of glioblastoma by promoting both tumor infiltration and angiogenesis. Neurobiology of Disease, 2020, 134, 104705.	4.4	23
7	Lipophilic dye-compatible brain clearing technique allowing correlative magnetic resonance/high-resolution fluorescence imaging in rat models of glioblastoma. Scientific Reports, 2020, 10, 17974.	3.3	3
8	Galectin-3 in Prostate Cancer Stem-Like Cells Is Immunosuppressive and Drives Early Metastasis. Frontiers in Immunology, 2020, 11, 1820.	4.8	22
9	A simplified integrated molecular and immunohistochemistry-based algorithm allows high accuracy prediction of glioblastoma transcriptional subtypes. Laboratory Investigation, 2020, 100, 1330-1344.	3.7	12
10	The Neurosphere Assay (NSA) Applied to Neural Stem Cells (NSCs) and Cancer Stem Cells (CSCs). Methods in Molecular Biology, 2019, 1953, 139-149.	0.9	6
11	The proneural gene ASCL1 governs the transcriptional subgroup affiliation in glioblastoma stem cells by directly repressing the mesenchymal gene NDRG1. Cell Death and Differentiation, 2019, 26, 1813-1831.	11.2	41
12	Tuberous sclerosis complex–associated CNS abnormalities depend on hyperactivation of mTORC1 and Akt. Journal of Clinical Investigation, 2018, 128, 1688-1706.	8.2	21
13	T1-Weighted Dynamic Contrast-Enhanced MRI Is a Noninvasive Marker of Epidermal Growth Factor Receptor vIII Status in Cancer Stem Cell–Derived Experimental Glioblastomas. American Journal of Neuroradiology, 2016, 37, E49-E51.	2.4	6
14	<i>miR-135a</i> Inhibits Cancer Stem Cell-Driven Medulloblastoma Development by Directly Repressing <i>Arhgef6</i> Expression. Stem Cells, 2015, 33, 1377-1389.	3.2	35
15	EGFR Amplified and Overexpressing Glioblastomas and Association With Better Response to Adjuvant Metronomic Temozolomide. Journal of the National Cancer Institute, 2015, 107, .	6.3	39
16	Tenascin-C Protects Cancer Stem–like Cells from Immune Surveillance by Arresting T-cell Activation. Cancer Research, 2015, 75, 2095-2108.	0.9	112
17	Brain tumor stem cell dancing. Annali Dell'Istituto Superiore Di Sanita, 2014, 50, 286-90.	0.4	2
18	mTOR signaling in neural stem cells: from basic biology to disease. Cellular and Molecular Life Sciences, 2013, 70, 2887-2898.	5.4	41

#	Article	IF	CITATIONS
19	Behavioural and EEG effects of chronic rapamycin treatment in a mouse model of Tuberous Sclerosis Complex. Neuropharmacology, 2013, 67, 1-7.	4.1	40
20	The Neurosphere Assay Applied to Neural Stem Cells and Cancer Stem Cells. Methods in Molecular Biology, 2013, 986, 267-277.	0.9	15
21	Timing of mTOR activation affects tuberous sclerosis complex neuropathology in mouse models. DMM Disease Models and Mechanisms, 2013, 6, 1185-97.	2.4	39
22	Gene Signatures Distinguish Stage-Specific Prostate Cancer Stem Cells Isolated From Transgenic Adenocarcinoma of the Mouse Prostate Lesions and Predict the Malignancy of Human Tumors. Stem Cells Translational Medicine, 2013, 2, 678-689.	3.3	20
23	Prostate cancer stem cells are targets of both innate and adaptive immunity and elicit tumor-specific immune responses. Oncolmmunology, 2013, 2, e24520.	4.6	38
24	Extracellular Sphingosine-1-Phosphate: A Novel Actor in Human Glioblastoma Stem Cell Survival. PLoS ONE, 2013, 8, e68229.	2.5	42
25	Gene Signatures Associated with Mouse Postnatal Hindbrain Neural Stem Cells and Medulloblastoma Cancer Stem Cells Identify Novel Molecular Mediators and Predict Human Medulloblastoma Molecular Classification. Cancer Discovery, 2012, 2, 554-568.	9.4	21
26	Monoclonal Antibodies Conjugated with Superparamagnetic Iron Oxide Particles Allow Magnetic Resonance Imaging Detection of Lymphocytes in the Mouse Brain. Molecular Imaging, 2012, 11, 7290.2011.00032.	1.4	13
27	The synthetic purine reversine selectively induces cell death of cancer cells. Journal of Cellular Biochemistry, 2012, 113, 3207-3217.	2.6	18
28	Gliomagenesis: a game played by few players or a team effort?. Frontiers in Bioscience - Elite, 2012, E4, 205.	1.8	7
29	Sustained Activation of mTOR Pathway in Embryonic Neural Stem Cells Leads to Development of Tuberous Sclerosis Complex-Associated Lesions. Cell Stem Cell, 2011, 9, 447-462.	11.1	212
30	Differential Signature of the Centrosomal MARK4 Isoforms in Glioma. Analytical Cellular Pathology, 2011, 34, 319-338.	1.4	23
31	Co-Graft of Allogeneic Immune Regulatory Neural Stem Cells (NPC) and Pancreatic Islets Mediates Tolerance, while Inducing NPC-Derived Tumors in Mice. PLoS ONE, 2010, 5, e10357.	2.5	30
32	Immunobiological Characterization of Cancer Stem Cells Isolated from Glioblastoma Patients. Clinical Cancer Research, 2010, 16, 800-813.	7.0	295
33	Epidermal Growth Factor Receptor Expression Identifies Functionally and Molecularly Distinct Tumor-Initiating Cells in Human Glioblastoma Multiforme and Is Required for Gliomagenesis. Cancer Research, 2010, 70, 7500-7513.	0.9	198
34	The GluR2 subunit inhibits proliferation by inactivating Srcâ€MAPK signalling and induces apoptosis by means of caspase 3/6â€dependent activation in glioma cells. European Journal of Neuroscience, 2009, 30, 25-34.	2.6	32
35	Neural precursor cell cultures from GM2 gangliosidosis animal models recapitulate the biochemical and molecular hallmarks of the brain pathology. Journal of Neurochemistry, 2009, 109, 135-147.	3.9	38
36	Tumor-Targeted Interferon-α Delivery by Tie2-Expressing Monocytes Inhibits Tumor Growth and Metastasis. Cancer Cell, 2008, 14, 299-311.	16.8	267

#	Article	IF	CITATIONS
37	Adult Neural Stem Cells. Methods in Molecular Biology, 2008, 438, 67-84.	0.9	16
38	Clonal Analyses and Cryopreservation of Neural Stem Cell Cultures. Methods in Molecular Biology, 2008, 438, 173-184.	0.9	23
39	Resilience to Transformation and Inherent Genetic and Functional Stability of Adult Neural Stem Cells <i>Ex vivo</i> . Cancer Research, 2007, 67, 3725-3733.	0.9	57
40	Brain tumour stem cells. Nature Reviews Cancer, 2006, 6, 425-436.	28.4	913
41	Embryonic Stem–Derived Versus Somatic Neural Stem Cells: A Comparative Analysis of Their Developmental Potential and Molecular Phenotype. Stem Cells, 2006, 24, 825-834.	3.2	38
42	Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 2005, 8, 211-226.	16.8	1,212
43	Defective Postnatal Neurogenesis and Disorganization of the Rostral Migratory Stream in Absence of the Vax1 Homeobox Gene. Journal of Neuroscience, 2004, 24, 11171-11181.	3.6	52
44	Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO Journal, 2004, 23, 4495-4505.	7.8	341
45	Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and epilepsy, is a marker of adult neural stem cells and forebrain GABAergic neurons. Developmental Dynamics, 2004, 231, 631-639.	1.8	76
46	Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma. Cancer Research, 2004, 64, 7011-7021.	0.9	2,318
47	Neural Stem Cells. Circulation Research, 2003, 92, 598-608.	4.5	232
48	Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature, 2003, 422, 688-694.	27.8	1,057
49	Neural Stem Cells in the Adult Nervous System. Journal of Hematotherapy and Stem Cell Research, 2003, 12, 655-670.	1.8	70
50	Clonal Analyses and Cryopreservation of Neural Stem Cell Cultures. , 2002, 198, 115-124.		6
51	Adult neural stem cells: plasticity and developmental potential. Journal of Physiology (Paris), 2002, 96, 81-90.	2.1	67
52	<i>Emx2</i> regulates the proliferation of stem cells of the adult mammalian central nervous system. Development (Cambridge), 2002, 129, 1633-1644.	2.5	115
53	Multipotent Neural Stem Cells Reside into the Rostral Extension and Olfactory Bulb of Adult Rodents. Journal of Neuroscience, 2002, 22, 437-445.	3.6	358
54	Emx2 regulates the proliferation of stem cells of the adult mammalian central nervous system. Development (Cambridge), 2002, 129, 1633-44.	2.5	38

#	Article	IF	CITATIONS
55	Characterization of CNS Precursor Subtypes and Radial Glia. Developmental Biology, 2001, 229, 15-30.	2.0	670
56	Cultures of Stem Cells of the Central Nervous System. , 2001, , 173-197.		24
57	CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nature Neuroscience, 2001, 4, 702-710.	14.8	996
58	Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10733-10738.	7.1	357
59	Gene therapy of experimental brain tumors using neural progenitor cells. Nature Medicine, 2000, 6, 447-450.	30.7	450
60	Skeletal myogenic potential of human and mouse neural stem cells. Nature Neuroscience, 2000, 3, 986-991.	14.8	440
61	Regulation of Neuronal Differentiation in Human CNS Stem Cell Progeny by Leukemia Inhibitory Factor. Developmental Neuroscience, 2000, 22, 86-95.	2.0	95
62	Isolation and Intracerebral Grafting of Nontransformed Multipotential Embryonic Human CNS Stem Cells. Journal of Neurotrauma, 1999, 16, 689-693.	3.4	110
63	Isolation and Cloning of Multipotential Stem Cells from the Embryonic Human CNS and Establishment of Transplantable Human Neural Stem Cell Lines by Epigenetic Stimulation. Experimental Neurology, 1999, 156, 71-83.	4.1	510
64	Epidermal and Fibroblast Growth Factors Behave as Mitogenic Regulators for a Single Multipotent Stem Cell-Like Population from the Subventricular Region of the Adult Mouse Forebrain. Journal of Neuroscience, 1999, 19, 3287-3297.	3.6	493
65	Basic fibroblast growth factor supports the proliferation of epidermal growth factor-generated neuronal precursor cells of the adult mouse CNS. Neuroscience Letters, 1995, 185, 151-154.	2.1	143