Hsin-Yu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/192785/publications.pdf

Version: 2024-02-01

56 papers

39,128 citations

93792 39 h-index 56 g-index

57 all docs

57 docs citations

57 times ranked 16912 citing authors

#	Article	IF	CITATIONS
1	An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers. Astrophysical Journal, 2022, 926, 152.	1.6	10
2	A standard siren cosmological measurement from the potential GW190521 electromagnetic counterpart ZTF19abanrhr. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2152-2157.	1.6	14
3	Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. Journal of High Energy Astrophysics, 2022, 34, 49-211.	2.4	350
4	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
5	Distance measures in gravitational-wave astrophysics and cosmology. Classical and Quantum Gravity, 2021, 38, 055010.	1.5	62
6	A Program for Multimessenger Standard Siren Cosmology in the Era of LIGO A+, Rubin Observatory, and Beyond. Astrophysical Journal Letters, 2021, 908, L4.	3.0	35
7	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
8	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	3.0	514
9	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	3.0	453
10	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	1.6	20
11	The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers. Astrophysical Journal Letters, 2021, 920, L3.	3.0	10
12	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	1.6	59
13	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
14	Cosmological inference using gravitational wave standard sirens: A mock data analysis. Physical Review D, 2020, 101, .	1.6	95
15	Systematic Uncertainty of Standard Sirens from the Viewing Angle of Binary Neutron Star Inspirals. Physical Review Letters, 2020, 125, 201301.	2.9	28
16	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext>      </mml:mrow></mml:math> . Physical Review	nml ant ext:	> < nasad:msub> ·
17	Letters, 2020, 125, 101102. Distinguishing Binary Neutron Star from Neutron Star–Black Hole Mergers with Gravitational Waves. Astrophysical Journal Letters, 2020, 893, L41.	3.0	15
18	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	3.0	1,090

#	Article	IF	CITATIONS
19	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^¼Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
20	Searching for Exotic Cores with Binary Neutron Star Inspirals. Astrophysical Journal Letters, 2020, 893, L4.	3.0	17
21	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	3.0	406
22	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
23	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	3.0	145
24	Measuring the Delay Time Distribution of Binary Neutron Stars. II. Using the Redshift Distribution from Third-generation Gravitational-wave Detectors Network. Astrophysical Journal Letters, 2019, 878, L13.	3.0	29
25	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	3.0	179
26	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
27	Viewing Angle of Binary Neutron Star Mergers. Physical Review X, 2019, 9, .	2.8	24
28	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
29	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
30	A two per cent Hubble constant measurement from standard sirens within five years. Nature, 2018, 562, 545-547.	13.7	282
31	Measuring the Hubble Constant with Neutron Star Black Hole Mergers. Physical Review Letters, 2018, 121, 021303.	2.9	78
32	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA., 2018, 21, 1.		2
33	OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS. Astrophysical Journal, 2017, 835, 31.	1.6	17
34	A Search for Kilonovae in the Dark Energy Survey. Astrophysical Journal, 2017, 837, 57.	1.6	34
35	Facilitating Follow-up of LIGO–Virgo Events Using Rapid Sky Localization. Astrophysical Journal, 2017, 840, 88.	1.6	13
36	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131

#	Article	IF	CITATIONS
37	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
38	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
39	Multi-messenger Observations of a Binary Neutron Star Merger < sup > * < /sup > . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
40	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
41	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta. Astrophysical Journal Letters, 2017, 848, L18.	3.0	327
42	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
43	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
44	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
45	SUPPLEMENT: "GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP―(2016, ApJL, 829, L15). Astrophysical Journal, Supplement Series, 2016, 226, 10.	3.0	41
46	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
47	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
48	A DECAM SEARCH FOR AN OPTICAL COUNTERPART TO THE LIGO GRAVITATIONAL-WAVE EVENT GW151226. Astrophysical Journal Letters, 2016, 826, L29.	3.0	38
49	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
50	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
51	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
52	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
53	GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP. Astrophysical Journal Letters, 2016, 829, L15.	3.0	126
54	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633

Hsin-Yu Chen

#	Article	IF	CITATIONS
55	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
56	Gamma-Ray-Burst Beaming and Gravitational-Wave Observations. Physical Review Letters, 2013, 111, 181101.	2.9	36