Louise Emy Kurozawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1927731/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Potato protein: current review of structure, technological properties, and potential application on spray drying microencapsulation. Critical Reviews in Food Science and Nutrition, 2023, 63, 6564-6579.	5.4	4
2	Microencapsulation of okara protein hydrolysate by spray drying: physicochemical and nutritive properties, sorption isotherm, and glass transition temperature. Drying Technology, 2022, 40, 2116-2127.	1.7	4
3	Effect of chia oil and pea protein content on stability of emulsions obtained by ultrasound and powder production by spray drying. Journal of Food Science and Technology, 2021, 58, 3765-3779.	1.4	7
4	Influence of rice protein hydrolysate on lipid oxidation stability and physico-chemical properties of linseed oil microparticles obtained through spray-drying. LWT - Food Science and Technology, 2021, 139, 110510.	2.5	10
5	Modulation of aroma release of instant coffees through microparticles of roasted coffee oil. Food Chemistry, 2021, 341, 128193.	4.2	12
6	The role of ultrasound-assisted emulsification of roasted coffee oil on aroma profile in spray-dried microparticles and its dynamic release by PTR-ToF–MS. European Food Research and Technology, 2021, 247, 865-878.	1.6	5
7	Evaluation of melon drying using hyperspectral imaging technique in the near infrared region. LWT - Food Science and Technology, 2021, 143, 111092.	2.5	18
8	Roasted coffee oil microencapsulation by spray drying and complex coacervation techniques: Characteristics of the particles and sensory effect. Innovative Food Science and Emerging Technologies, 2021, 72, 102739.	2.7	20
9	Improving the emulsifying property of potato protein by hydrolysis: an application as encapsulating agent with maltodextrin. Innovative Food Science and Emerging Technologies, 2021, 70, 102696.	2.7	14
10	Ultrasound-Assisted Emulsification of Roasted Coffee Oil in Complex Coacervates and Real-time Coffee Aroma Release by PTR-ToF–MS. Food and Bioprocess Technology, 2021, 14, 1857-1871.	2.6	3
11	Impact of glass transition on chemical properties, caking and flowability of soymilk powder during storage. Powder Technology, 2021, 386, 20-29.	2.1	6
12	Plant-based beverages: Ecofriendly technologies in the production process. Innovative Food Science and Emerging Technologies, 2021, 72, 102760.	2.7	21
13	A new approach to the mechanisms of agglomeration in fluidized beds based on Spatial Filter Velocimetry measurements. Powder Technology, 2021, 393, 219-228.	2.1	4
14	5-caffeoylquinic acid retention in spray drying of cocona, an Amazonian fruit, using hydrolyzed collagen and maltodextrin as encapsulating agents. Drying Technology, 2021, 39, 1854-1868.	1.7	5
15	Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil. Journal of Food Engineering, 2020, 267, 109761.	2.7	66
16	Storage stability of 5-caffeoylquinic acid in powdered cocona pulp microencapsulated with hydrolyzed collagen and maltodextrin blend. Food Research International, 2020, 137, 109652.	2.9	4
17	Rotating-Pulsed Fluidized Bed Drying of Okara: Evaluation of Process Kinetic and Nutritive Properties of Dried Product. Food and Bioprocess Technology, 2020, 13, 1611-1620.	2.6	15
18	Enzymatic pretreatment in the extraction process of soybean to improve protein and isoflavone recovery and to favor aglycone formation. Food Research International, 2020, 137, 109624.	2.9	19

LOUISE EMY KUROZAWA

#	Article	IF	CITATIONS
19	High internal phase emulsions (HIPE) using pea protein and different polysaccharides as stabilizers. Food Hydrocolloids, 2020, 105, 105775.	5.6	78
20	Novel experimental approach to study aroma release upon reconstitution of instant coffee products. Food Chemistry, 2020, 317, 126455.	4.2	13
21	Enzymatic hydrolysis of okara protein concentrate by mixture of endo and exopeptidase. Journal of Food Processing and Preservation, 2019, 43, e14134.	0.9	10
22	Optimizing the potential bioactivity of isoflavones from soybeans via ultrasound pretreatment: Antioxidant potential and NFâ€₽B activation. Journal of Food Biochemistry, 2019, 43, e13018.	1.2	17
23	Combined uses of an endo- and exopeptidase in okara improve the hydrolysates via formation of aglycone isoflavones and antioxidant capacity. LWT - Food Science and Technology, 2019, 115, 108467.	2.5	14
24	Kinetic modeling of the conversion and losses of isoflavones during soybean soaking. Journal of Food Engineering, 2019, 261, 171-177.	2.7	1
25	Efeito da transição vÃŧrea na estocagem de extrato de soja em pó. Revista Dos Trabalhos De Iniciação CientÃfica Da UNICAMP, 2019, , .	0.0	Ο
26	Secagem em leito de jorro do okara. Revista Dos Trabalhos De Iniciação CientÃfica Da UNICAMP, 2019, , .	0.0	0
27	Efeito da transição vÃtrea na estocagem de extrato de soja em pó em diferentes umidades relativas. Revista Dos Trabalhos De Iniciação CientÃfica Da UNICAMP, 2019, , .	0.0	Ο
28	Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara. Journal of Food Science and Technology, 2018, 55, 1508-1517.	1.4	46
29	Optimization of ultrasoundâ€assisted extraction of grapeâ€seed oil to enhance process yield and minimize free radical formation. Journal of the Science of Food and Agriculture, 2018, 98, 5019-5026.	1.7	38
30	Microencapsulation of grape seed oil by spray drying. Food Science and Technology, 2018, 38, 263-270.	0.8	39
31	Soybean ultrasound pre-treatment prior to soaking affects β-glucosidase activity, isoflavone profile and soaking time. Food Chemistry, 2018, 269, 404-412.	4.2	29
32	Spray drying of babassu coconut milk using different carrier agents. Drying Technology, 2017, 35, 76-87.	1.7	29
33	Hydrophilic food compounds encapsulation by ionic gelation. Current Opinion in Food Science, 2017, 15, 50-55.	4.1	69
34	Near-infrared spectroscopy as a rapid method for evaluation physicochemical changes of stored soybeans. Journal of Stored Products Research, 2017, 73, 1-6.	1.2	43
35	Conversion/degradation of isoflavones and color alterations during the drying of okara. LWT - Food Science and Technology, 2017, 75, 512-519.	2.5	58
36	Implications of Non-Equilibrium States and Glass Transitions in Frozen and Dried Fish and Meat Products. , 2017, , 325-348.		3

LOUISE EMY KUROZAWA

#	Article	IF	CITATIONS
37	Spray Drying of Pequi Pulp: Process Performance and Physicochemical and Nutritional Properties of the Powdered Pulp. Brazilian Archives of Biology and Technology, 2016, 59, .	0.5	11
38	Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Science and Technology, 2016, 36, 375-381.	0.8	62
39	Production of Peptides with Radical Scavenging Activity and Recovery of Total Carotenoids Using Enzymatic Protein Hydrolysis of Shrimp Waste. Journal of Food Biochemistry, 2016, 40, 517-525.	1.2	12
40	The effect of thermal treatment of whole soybean flour on the conversion of isoflavones and inactivation of trypsin inhibitors. Food Chemistry, 2016, 194, 1095-1101.	4.2	46
41	Thermodynamic Properties of Water Desorption of Papaya. Journal of Food Processing and Preservation, 2015, 39, 2412-2420.	0.9	7
42	Microencapsulation of pequi pulp by spray drying: use of modified starches as encapsulating agent. Engenharia Agricola, 2014, 34, 980-991.	0.2	24
43	Ascorbic acid degradation of papaya during drying: Effect of process conditions and glass transition phenomenon. Journal of Food Engineering, 2014, 123, 157-164.	2.7	60
44	The effects of soybean soaking on grain properties and isoflavones loss. LWT - Food Science and Technology, 2014, 59, 1274-1282.	2.5	37
45	Influence of Process Conditions on the Physicochemical Properties of Pequi Powder Produced by Spray Drying. Drying Technology, 2013, 31, 825-836.	1.7	65
46	Microencapsulation of babassu coconut milk. Food Science and Technology, 2013, 33, 737-744.	0.8	19
47	Water Sorption and Class Transition Temperature of Spray-Dried Mussel Meat Protein Hydrolysate. Drying Technology, 2012, 30, 175-184.	1.7	14
48	DRYING KINETIC OF FRESH AND OSMOTICALLY DEHYDRATED MUSHROOM (<i>AGARICUS BLAZEI</i>). Journal of Food Process Engineering, 2012, 35, 295-313.	1.5	22
49	Glass transition phenomenon on shrinkage of papaya during convective drying. Journal of Food Engineering, 2012, 108, 43-50.	2.7	90
50	Spray Drying of Chicken Meat Protein Hydrolysate: Influence of Process Conditions on Powder Property and Dryer Performance. Drying Technology, 2011, 29, 163-173.	1.7	33
51	Optimization of the Enzymatic Hydrolysis of Blue Shark Skin. Journal of Food Science, 2011, 76, C938-49.	1.5	19
52	CITT and inverse analyses applied to the study of the mushroom drying process. Journal of Food Engineering, 2010, 101, 166-178.	2.7	4
53	Isotermas de dessorção de filé de bonito (Sarda sarda) desidratado osmoticamente e defumado. Revista Brasileira De Engenharia Agricola E Ambiental, 2009, 13, 305-311.	0.4	8
54	Effect of osmotic dehydration on the drying kinetics and quality of cashew apple. International Journal of Food Science and Technology, 2009, 44, 980-986.	1.3	49

LOUISE EMY KUROZAWA

#	Article	IF	CITATIONS
55	Effect of maltodextrin and gum arabic on water sorption and glass transition temperature of spray dried chicken meat hydrolysate protein. Journal of Food Engineering, 2009, 91, 287-296.	2.7	90
56	Effect of carrier agents on the physicochemical properties of a spray dried chicken meat protein hydrolysate. Journal of Food Engineering, 2009, 94, 326-333.	2.7	85
57	Influence of Spray Drying Conditions on Physicochemical Properties of Chicken Meat Powder. Drying Technology, 2009, 27, 1248-1257.	1.7	82
58	Optimization of the Enzymatic Hydrolysis of Chicken Meat Using Response Surface Methodology. Journal of Food Science, 2008, 73, C405-12.	1.5	48
59	Obtenção de isotermas de dessorção de cogumelo in natura e desidratado osmoticamente. Food Science and Technology, 2005, 25, 828-834.	0.8	12
60	Avaliação do potencial antioxidante de proteÃnas do soro de leite concentradas por ultrafiltração e hidrolisadas por diferentes proteases comerciais. Brazilian Journal of Food Technology, 0, 22, .	0.8	6
61	Production of Hydrolysate of Okara Protein Concentrate with High Antioxidant Capacity and Aglycone Isoflavone Content. Brazilian Archives of Biology and Technology, 0, 62, .	0.5	3
62	Estabilidade fÃsica e quÃmica de hidrolisados proteicos de okara microencapsulados por spray drying. Brazilian Journal of Food Technology, 0, 23, .	0.8	2
63	Efeito da estocagem sobre o ácido 5-cafeoilquÃnico de polpa liofilizada de maná-cubiu (Solanum) Tj ETQq1 1 0).784314 r	gBT /Overlo
64	Influence of combined hydrolyzed collagen and maltodextrin as carrier agents in spray drying of cocona pulp. Brazilian Journal of Food Technology, 0, 23, .	0.8	9