## Mariya Podzorova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1927706/publications.pdf Version: 2024-02-01



MARIYA PODZOROVA

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Environmentally friendly films based on poly(3-hydroxybutyrate) and poly(lactic acid): A review.<br>Russian Journal of Physical Chemistry B, 2014, 8, 726-732.                                 | 1.3 | 26        |
| 2  | Impact of Water and UV Irradiation on Nonwoven Polylactide/Natural Rubber Fiber. Polymers, 2021, 13, 461.                                                                                      | 4.5 | 20        |
| 3  | Composite Materials Based on Polylactide and Poly-3-hydroxybutyrate "Green―Polymers. Russian<br>Journal of Applied Chemistry, 2018, 91, 417-423.                                               | 0.5 | 18        |
| 4  | Effect of UV Irradiation on the Structural and Dynamic Characteristics of Polylactide and Its Blends with Polyethylene. Russian Journal of Physical Chemistry B, 2020, 14, 167-175.            | 1.3 | 18        |
| 5  | Thermal oxidation and structure of polylactide–polyethylene blends. Russian Journal of Physical<br>Chemistry B, 2016, 10, 825-829.                                                             | 1.3 | 11        |
| 6  | Degradation of Polylactide—Polyethylene Binary Blends in Soil. Russian Journal of Applied Chemistry,<br>2019, 92, 767-774.                                                                     | 0.5 | 11        |
| 7  | Influence of different factors on the destruction of films based on polylactic acid and oxidized polyethylene. AIP Conference Proceedings, 2016, , .                                           | 0.4 | 7         |
| 8  | Influence of ultraviolet on polylactide degradation. AIP Conference Proceedings, 2017, , .                                                                                                     | 0.4 | 6         |
| 9  | Assessment of Morphological, Physical, Thermal, and Thermal Conductivity Properties of Polypropylene/Lignosulfonate Blends. Materials, 2021, 14, 543.                                          | 2.9 | 6         |
| 10 | Biodegradable materials containing recycled polymers. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012015.                                                             | 0.6 | 5         |
| 11 | Solid-Phase Thermal Oxidation of Polyethylene—Polylactide Blends. Russian Journal of Physical<br>Chemistry B, 2019, 13, 354-361.                                                               | 1.3 | 4         |
| 12 | Impact of UV treatment on polylactide–polyethylene film properties. IOP Conference Series: Materials<br>Science and Engineering, 2019, 525, 012043.                                            | 0.6 | 4         |
| 13 | Effect of Exposure in Aqueous Medium at Elevated Temperature on the Structure of Nonwoven<br>Materials Based on Polylactide and Natural Rubber. Polymer Science - Series A, 2021, 63, 515-525. | 1.0 | 4         |
| 14 | The effect of environmental factors on biodegradable polylactide-based materials. Polymer Science -<br>Series D, 2017, 10, 289-292.                                                            | 0.6 | 3         |
| 15 | Degradation of Polylactide–Polyethylene Blends in Aqueous Media. Russian Journal of Applied<br>Chemistry, 2021, 94, 639-646.                                                                   | 0.5 | 3         |
| 16 | Kinetic patterns for thermal oxidation of binary and ternary blends based on polylactide and polyethylene. Russian Chemical Bulletin, 2021, 70, 1791-1797.                                     | 1.5 | 2         |
| 17 | Promising agrofibers based on biodegradable polymers. MATEC Web of Conferences, 2019, 298, 00080.                                                                                              | 0.2 | 1         |
| 18 | Kinetics of thermo-oxidative degradation of polymer blends based on polylactide. AIP Conference Proceedings, 2019, , .                                                                         | 0.4 | 1         |

MARIYA PODZOROVA

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Agricultural materials based on eco-friendly polymers. IOP Conference Series: Materials Science and Engineering, 2020, 971, 032022.               | 0.6 | 1         |
| 20 | Damage of polymer blends polylactide-polyethylene under the effect of ultraviolet irradiation. AIP<br>Conference Proceedings, 2020, , .           | 0.4 | 1         |
| 21 | Thermal and Thermooxidative Degradation of Blends Based on Polylactide and Polyethylene. Russian<br>Metallurgy (Metally), 2020, 2020, 1182-1185.  | 0.5 | 1         |
| 22 | Effect of Ozone on the Structure and Dynamics of Polylactide-Polyethylene Blends. Russian Journal of Physical Chemistry B, 2021, 15, 854-860.     | 1.3 | 1         |
| 23 | Advanced composite materials based on polyhydroxybutyrate and polylactic acid. AIP Conference Proceedings, 2017, , .                              | 0.4 | 0         |
| 24 | Photodegradation of films based on polylactide-polyethylene blends. AIP Conference Proceedings, 2018, , .                                         | 0.4 | 0         |
| 25 | Eco-friendly polymer materials for agricultural purposes. MATEC Web of Conferences, 2019, 298, 00130.                                             | 0.2 | 0         |
| 26 | Influence of Biodegradable Component Nature on Biodegradation of Composites Based on<br>Polyethylene. Key Engineering Materials, 0, 910, 623-629. | 0.4 | 0         |

3