Huiyu Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/19273/publications.pdf

Version: 2024-02-01

759233 839539 26 357 12 18 citations h-index g-index papers 26 26 26 121 all docs docs citations times ranked citing authors

#	ARTICLE Practical evaluation of flows due to arbitrary singularity distributions in the 3D theory of ship.	IF	CITATIONS
1	motions in regular waves at <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e1855" altimg="si17.svg"><mml:mrow><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>3</mml:mn><mml:mo linebreak="goodbreak"</mml:mo </mml:mrow></mml:math>	2.5	10
2	linebreakstyle="after"> a%, ₹/mmkmo> < mmkmi> i, < /mmkmrow> . European Journal of Diffractionâ€"radiation of regular water waves and irregular frequencies: A straightforward flow-modeling approach and analysis. European Journal of Mechanics, B/Fluids, 2021, 90, 7-14.	2.5	7
3	Boundary-integral representation sans waterline integral for flows around ships steadily advancing in calm water. European Journal of Mechanics, B/Fluids, 2021, 89, 259-266.	2.5	7
4	Practical representation of flows due to general singularity distributions for wave diffraction–radiation by offshore structures in finite water depth. European Journal of Mechanics, B/Fluids, 2021, 89, 1-14.	2.5	10
5	Kelvin–Havelock–Peters approximations to a classical generic wave integral. Applied Mathematical Modelling, 2020, 77, 950-962.	4.2	2
6	Why can steep short waves occur at a ship waterline and how to filter them in a practical way?. European Journal of Mechanics, B/Fluids, 2020, 83, 164-174.	2.5	6
7	motions in regular waves at <mml:math altimg="si13.svg" display="inline" id="d1e1372" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>\;,</mml:mi><mml:mi><mml:mo linebreak="goodbreak" linebreakstyle="after"><:</mml:mo><mml:mo></mml:mo>6^•4</mml:mi></mml:mrow></mml:math>	2.5 mml:mrow:	10 />
8	Practical flow-representations for arbitrary singularity-distributions in ship and offshore hydrodynamics, with applications to steady ship waves and wave diffraction-radiation by offshore structures. European Journal of Mechanics, B/Fluids, 2020, 83, 24-41.	2.5	13
9	Froude number, hull shape, and convergence of integral representation of ship waves. European Journal of Mechanics, B/Fluids, 2019, 78, 216-229.	2.5	14
10	Boundary-integral representations for ship motions in regular waves. Journal of Engineering Mathematics, 2019, 114, 115-129.	1.2	11
11	Wave profile along a ship hull, short farfield waves, and broad inner Kelvin wake sans divergent waves. Physics of Fluids, 2019, 31, .	4.0	15
12	Influence of Froude number and submergence depth on wave patterns. European Journal of Mechanics, B/Fluids, 2019, 75, 258-270.	2.5	16
13	Hogner model of wave interferences for farfield ship waves in shallow water. Applied Ocean Research, 2018, 73, 127-140.	4.1	11
14	The Kelvin–Havelock–Peters farfield approximation to ship waves. European Journal of Mechanics, B/Fluids, 2018, 70, 93-101.	2.5	7
15	Validation of a global approximation for wave diffraction-radiation in deep water. Applied Ocean Research, 2018, 74, 80-86.	4.1	22
16	Elementary ship models and farfield waves. European Journal of Mechanics, B/Fluids, 2018, 67, 231-241.	2.5	12
17	Wave component in the Green function for diffraction radiation of regular water waves. Applied Ocean Research, 2018, 81, 72-75.	4.1	17
18	Basic models of farfield ship waves in shallow water. Journal of Ocean Engineering and Science, 2018, 3, 109-126.	4.3	8

Huiyu Wu

#	Article	IF	CITATIONS
19	Neumann–Michell theory of short ship waves. European Journal of Mechanics, B/Fluids, 2018, 72, 601-615.	2.5	11
20	A global approximation to the Green function for diffraction radiation of water waves. European Journal of Mechanics, B/Fluids, 2017, 65, 54-64.	2.5	32
21	Michell and Hogner models of far-field ship waves. Applied Ocean Research, 2017, 68, 194-203.	4.1	20
22	Errors due to a practical Green function for steady ship waves. European Journal of Mechanics, B/Fluids, 2016, 55, 162-169.	2.5	20
23	Farfield waves created by a catamaran in shallow water. European Journal of Mechanics, B/Fluids, 2016, 59, 197-204.	2.5	9
24	Wavelengths of the highest waves created by fast monohull ships or catamarans. Ocean Engineering, 2016, 113, 208-214.	4.3	12
25	Farfield waves created by a monohull ship in shallow water. European Journal of Mechanics, B/Fluids, 2015, 49, 226-234.	2.5	28
26	Comparison of three simple models of Kelvin's ship wake. European Journal of Mechanics, B/Fluids, 2015, 49, 12-19.	2.5	27