Daniel Osvaldo MÃ;rtire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1927129/publications.pdf

Version: 2024-02-01

123 papers 3,125 citations

32 h-index 50 g-index

125 all docs

125 docs citations

125 times ranked 3361 citing authors

#	Article	IF	Citations
1	Carbon nitride nanomaterials with application in photothermal and photodynamic therapies. Photodiagnosis and Photodynamic Therapy, 2022, 37, 102683.	2.6	10
2	Photodegradation of norfloxacin adsorbed on clay and carbon-clay nanomaterials: an evaluation based on antimicrobial tests. Comptes Rendus Chimie, 2022, 25, 45-52.	0.5	0
3	Comparison of the Capacity of Fluoride Adsorption and Recycling Ability of Al(OH)3-Coated Iron Oxide Nanoparticles Prepared by Different Methods. Water, Air, and Soil Pollution, 2022, 233, 1.	2.4	2
4	Comparison of the (photo)catalytic efficiency of Ag/Fe nanocomposites prepared by polyol synthesis and laser ablation. Journal of Nanoparticle Research, 2022, 24, 1.	1.9	4
5	Novel Bimetallic Magnetic Nanocomposites Obtained from Waste-Sourced Bio-based Substances as Sustainable Photocatalysts Materials Research Bulletin, 2022, , 111846.	5.2	3
6	Magnetic Nanoparticle–Polymer Composites Loaded with Hydrophobic Sensitizers for Photodegradation of Azoic Dyes. ACS Applied Nano Materials, 2022, 5, 7460-7470.	5.0	7
7	Plasmonic silica-gold core-shell nanoparticles: Interaction with organic dyes for light-induced applications. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 431, 114016.	3.9	3
8	Versatile nanoadsorbents based on magnetic mesostructured silica nanoparticles with tailored surface properties for organic pollutants removal. Journal of Environmental Chemical Engineering, 2021, 9, 104841.	6.7	21
9	Pectin-Coated Plasmonic Nanoparticles for Photodynamic Therapy: Inspecting the Role of Serum Proteins. ACS Omega, 2021, 6, 12567-12576.	3.5	8
10	Photothermal therapy with silver nanoplates in HeLa cells studied by <i>in situ</i> fluorescence microscopy. Biomaterials Science, 2021, 9, 2608-2619.	5.4	11
11	Riboflavin-Mediated Photooxidation of Gold Nanoparticles and Its Effect on the Inactivation of Bacteria. Langmuir, 2020, 36, 8272-8281.	3.5	10
12	Drug repurposing for the treatment of alveolar echinococcosis: in vitro and in vivo effects of silica nanoparticles modified with dichlorophen. Parasitology, 2019, 146, 1620-1630.	1.5	7
13	Bioactivity of gallic acid–conjugated silica nanoparticles against Paenibacillus larvae and their host, Apis mellifera honeybee. Apidologie, 2019, 50, 616-631.	2.0	8
14	Carbamazepine Degradation Mediated by Light in the Presence of Humic Substances-Coated Magnetite Nanoparticles. Nanomaterials, 2019, 9, 1379.	4.1	15
15	<i>Eucalyptus</i> extracts-mediated synthesis of metallic and metal oxide nanoparticles: current status and perspectives. Materials Research Express, 2019, 6, 082006.	1.6	22
16	Effect of hybrid SiO ₂ @Ag nanoparticles with raspberry-like morphology on the excited states of the photosensitizers Rose Bengal and riboflavin. New Journal of Chemistry, 2019, 43, 9123-9133.	2.8	8
17	Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. Journal of Colloid and Interface Science, 2019, 544, 198-205.	9.4	116
18	Imidazole and beta-carotene photoprotection against photodynamic therapy evaluated by synchrotron infrared microscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 195, 53-61.	3.9	5

#	Article	IF	Citations
19	Application of Novel Fulvic Acid-Coated Magnetite Nanoparticles for CO2 \hat{a} -Mediated Photoreduction of Cr(VI). Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	1
20	Water Defluoridation: Nanofiltration vs Membrane Distillation. Industrial & Engineering Chemistry Research, 2018, 57, 14740-14748.	3.7	35
21	Photodynamic Therapy in HeLa Cells Incubated with Riboflavin and Pectinâ€coated Silver Nanoparticles. Photochemistry and Photobiology, 2018, 94, 1159-1166.	2.5	26
22	Experimental and computational investigation of the substituent effects on the reduction of Fe ³⁺ by 1,2-dihydroxybenzenes. New Journal of Chemistry, 2017, 41, 12685-12693.	2.8	10
23	Biowaste-derived substances as a tool for obtaining magnet-sensitive materials for environmental applications in wastewater treatments. Chemical Engineering Journal, 2017, 310, 307-316.	12.7	42
24	Transient spectroscopic characterization and theoretical modeling of fulvic acid radicals formed by UV-A radiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 571-579.	3.9	10
25	Visible light-mediated photodegradation of imidazoline drugs in the presence of Riboflavin: Possible undesired effects on imidazoline-based eye drops. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 399-405.	3.9	6
26	Effect of Silver Nanoparticles on the Photophysics of Riboflavin: Consequences on the ROS Generation. Journal of Physical Chemistry C, 2016, 120, 21967-21975.	3.1	20
27	Two choices for the functionalization of silica nanoparticles with gallic acid: characterization of the nanomaterials and their antimicrobial activity against Paenibacillus Iarvae. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	16
28	Photogeneration of Reactive Oxygen Species by SBO and Application in Waste-Water Treatment. Springer Briefs in Molecular Science, 2015, , 17-28.	0.1	0
29	EXAFS and DFT study of the cadmium and lead adsorption on modified silica nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 156-163.	3.9	21
30	Photoinduced transformation of waste-derived soluble bio-based substances. Chemical Engineering Journal, 2015, 274, 247-255.	12.7	10
31	The effect of dichlorophen binding to silica nanoparticles on its photosensitized degradation in water. Water Research, 2014, 50, 229-236.	11.3	15
32	Properties of singlet- and triplet-excited states of hemicyanine dyes. Chemical Papers, 2014, 68, .	2.2	4
33	Novel Magnetite Nanoparticles Coated with Waste-Sourced Biobased Substances as Sustainable and Renewable Adsorbing Materials. ACS Sustainable Chemistry and Engineering, 2014, 2, 1518-1524.	6.7	95
34	Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticles. Environmental Sciences: Processes and Impacts, 2014, 16, 858.	3.5	4
35	Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 2014, 235, 236-243.	12.7	61
36	Combined Experimental and Computational Investigation of the Fluorescence Quenching of Riboflavin by Cinnamic Alcohol Chemisorbed on Silica Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 15348-15355.	3.1	8

#	Article	IF	CITATIONS
37	Characterization of a humic acid extracted from marine sediment and its influence on the growth of marine diatoms. Journal of the Marine Biological Association of the United Kingdom, 2014, 94, 895-906.	0.8	11
38	Antioxidant \hat{l}^2 -Carotene Does Not Quench Singlet Oxygen in Mammalian Cells. Journal of the American Chemical Society, 2013, 135, 272-279.	13.7	40
39	Chloride anion effect on the advanced oxidation processes of methidathion and dimethoate: Role of Cl2â~ radical. Water Research, 2013, 47, 351-362.	11.3	39
40	Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 2013, 209, 176-180.	4.4	41
41	Evaluation of the Hg2+ binding potential of fulvic acids from fluorescence excitation—emission matrices. Photochemical and Photobiological Sciences, 2013, 12, 384-392.	2.9	26
42	One-electron oxidation of antioxidants: A kinetic-thermodynamic correlation. Redox Report, 2013, 18, 205-209.	4.5	10
43	Photophysics of novel 22Ï€ porphyrinoids. Journal of Porphyrins and Phthalocyanines, 2012, 16, 499-507.	0.8	3
44	Photoinduced reduction of divalent mercury by quinones in the presence of formic acid under anaerobic conditions. Chemosphere, 2012, 89, 1189-1194.	8.2	23
45	Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Research, 2012, 46, 4732-4740.	11.3	118
46	Triplet state of 4-methoxybenzyl alcohol chemisorbed on silica nanoparticles. Photochemical and Photobiological Sciences, 2012, 11, 1032-1040.	2.9	8
47	Reactivity of neonicotinoid insecticides with carbonate radicals. Water Research, 2012, 46, 3479-3489.	11.3	86
48	Oxidation of ophthalmic drugs photopromoted by inorganic radicals. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 244, 32-37.	3.9	6
49	Understanding the Parameters Affecting the Photoluminescence of Silicon Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 11315-11325.	3.1	36
50	Photolytic and Radiolytic Oxidation of Humic Acid ^{â€} . Photochemistry and Photobiology, 2012, 88, 810-815.	2.5	9
51	Modulation of Optical Properties of Dissolved Humic Substances by their Molecular Complexity ^{â€} . Photochemistry and Photobiology, 2012, 88, 792-800.	2.5	20
52	The effect of humic acid binding to magnetite nanoparticles on the photogeneration of reactive oxygen species. Separation and Purification Technology, 2012, 91, 23-29.	7.9	44
53	Safranine-T Triplet-State Quenching by Modified Silica Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 18122-18130.	3.1	10
54	The role of humic acid aggregation on the kinetics of photosensitized singlet oxygen production and decay. Photochemical and Photobiological Sciences, 2011, 10, 1080-1086.	2.9	25

#	Article	IF	Citations
55	Reaction kinetics and mechanisms of neonicotinoidpesticides with sulfate radicals. New Journal of Chemistry, 2011, 35, 672-680.	2.8	21
56	Phenol depletion by thermally activated peroxydisulfate at 70 \hat{A}° C. Chemosphere, 2011, 84, 1270-1275.	8.2	50
57	A kinetic study of the reactions of sulfate and dihydrogen phosphate radicals with epicatechin, epicatechingallate, and epigalocatechingallate. International Journal of Chemical Kinetics, 2010, 42, 391-396.	1.6	4
58	Reactivity of neonicotinoid pesticides with singlet oxygen. Catalysis Today, 2010, 151, 137-142.	4.4	46
59	Generation of Chemisorbed Benzyl Radicals on Silica Nanoparticles. Photochemistry and Photobiology, 2010, 86, 1208-1214.	2.5	4
60	Reduction of Mercury(II) by the Carbon Dioxide Radical Anion: A Theoretical and Experimental Investigation. Journal of Physical Chemistry A, 2010, 114, 12845-12850.	2.5	20
61	Degradation of the Herbicides Clomazone, Paraquat, and Glyphosate by Thermally Activated Peroxydisulfate. Journal of Agricultural and Food Chemistry, 2010, 58, 12858-12862.	5.2	23
62	Chemisorbed Thiols on Silica Particles: Characterization of Reactive Sulfur Species. Journal of Physical Chemistry C, 2010, 114, 5080-5087.	3.1	11
63	One-Component Pressureâ^Temperature Phase Diagrams in the Presence of Air. Journal of Chemical Education, 2010, 87, 932-936.	2.3	1
64	Alloxan-dialuric acid cycling: A complex redox mechanism. Free Radical Research, 2009, 43, 93-99.	3.3	4
65	Photoinduced Degradation of the Herbicide Clomazone Model Reactions for Natural and Technical Systems. Photochemistry and Photobiology, 2009, 85, 686-692.	2.5	18
66	The use of molecular probes for the characterization of dispersions of functionalized silica nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 54-60.	3.9	7
67	Photophysical Properties of Blue-Emitting Silicon Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 13694-13702.	3.1	50
68	Thermally activated peroxydisulfate in the presence of additives: A clean method for the degradation of pollutants. Chemosphere, 2009, 75, 1405-1409.	8.2	88
69	Reactivity of hydroxyl radicals with neonicotinoid insecticides: mechanism and changes in toxicity. Photochemical and Photobiological Sciences, 2009, 8, 1016-1023.	2.9	69
70	A combined theoretical and experimental study on the oxidation of fulvic acid by the sulfate radical anion. Photochemical and Photobiological Sciences, 2009, 8, 992-997.	2.9	85
71	Kinetics of the sulfate radicalâ€mediated photoâ€oxidation of humic substances. International Journal of Chemical Kinetics, 2008, 40, 19-24.	1.6	45
72	Photodegradation of Soil Organic Matter and its Effect on Gramâ€negative Bacterial Growth. Photochemistry and Photobiology, 2008, 84, 1126-1132.	2.5	18

#	Article	IF	Citations
7 3	Theoretical and Experimental Investigation on the Oxidation of Gallic Acid by Sulfate Radical Anions. Journal of Physical Chemistry A, 2008, 112, 1188-1194.	2.5	82
74	Synthesis and Characterization of Butoxylated Silica Nanoparticles. Reaction with Benzophenone Triplet States. Journal of Physical Chemistry C, 2007, 111, 7623-7628.	3.1	19
75	Reactions of Sulphate Radicals with Substituted Pyridines: A Structure–Reactivity Correlation Analysis. ChemPhysChem, 2007, 8, 2498-2505.	2.1	24
76	Trichloroacetic acid dehalogenation by reductive radicals. Inorganica Chimica Acta, 2007, 360, 1209-1216.	2.4	29
77	Reactions of Cl [•] /Cl ₂ ^{•â^³} Radicals with the Nanoparticle Silica Surface and with Humic Acids: Model Reactions for the Aqueous Phase Chemistry of the Atmosphere. Photochemistry and Photobiology, 2007, 83, 944-951.	2.5	9
78	Water/Silica Nanoparticle Interfacial Kinetics of Sulfate, Hydrogen Phosphate, and Dithiocyanate Radicals. Photochemistry and Photobiology, 2005, 81, 1526.	2.5	9
79	Kinetic Studies on the Sulfate Radical-Initiated Polymerization of Vinyl Acetate and 4-Vinyl Pyridine in the Presence of Silica Nanoparticles. Langmuir, 2005, 21, 8001-8009.	3.5	7
80	Kinetics of the interaction of sulfate and hydrogen phosphate radicals with small peptides of glycine, alanine, tyrosine and tryptophan. Photochemical and Photobiological Sciences, 2005, 4, 840.	2.9	20
81	Reactions of Phosphate Radicals with Monosubstituted Benzenes. A Mechanistic Investigation. Helvetica Chimica Acta, 2003, 86, 2509-2524.	1.6	25
82	Volume and enthalpy changes of peroxodiphosphate dissociation. Chemical Physics Letters, 2003, 373, 176-181.	2.6	5
83	A Kinetic Study of the Reactions of Sulfate Radicals at the Silica Nanoparticleâ^Water Interface. Journal of Physical Chemistry B, 2003, 107, 6131-6138.	2.6	10
84	Kinetic study of the oxidation of phenolic derivatives of $\hat{l}\pm,\hat{l}\pm$ -trifluorotoluene by singlet molecular oxygen [O2(1 \hat{l} "g)] and hydrogen phosphate radicals. Photochemical and Photobiological Sciences, 2003, 2, 882-887.	2.9	4
85	Singlet molecular oxygen generation and quenching by the antiglaucoma ophthalmic drugs, Timolol and Pindolol. Photochemical and Photobiological Sciences, 2002, 1, 788-792.	2.9	9
86	Kinetic study of the reactions of oxoiron(IV) with aromatic substrates in aqueous solutions. International Journal of Chemical Kinetics, 2002, 34, 488-494.	1.6	71
87	Kinetic Study of the Reactions of Chlorine Atoms and Cl2•-Radical Anions in Aqueous Solutions. II. Toluene, Benzoic Acid, and Chlorobenzeneâ€. Journal of Physical Chemistry A, 2001, 105, 5385-5392.	2.5	133
88	Aqueous Phase Kinetic Studies Involving Intermediates of Environmental Interest: Phosphate Radicals and Their Reactions with Substituted Benzenes. Progress in Reaction Kinetics and Mechanism, 2001, 26, 201-218.	2.1	34
89	Oxidation of di- and tripeptides of tyrosine and valine mediated by singlet molecular oxygen, phosphate radicals and sulfate radicals. Journal of Photochemistry and Photobiology B: Biology, 2001, 65, 74-84.	3.8	27
90	Reactions of carbon dioxide radical anion with substituted benzenes. Journal of Physical Organic Chemistry, 2001, 14, 300-309.	1.9	56

#	Article	IF	Citations
91	Photolysis of polyphosphate ions in alkaline aqueous solution. International Journal of Chemical Kinetics, 2000, 32, 111-117.	1.6	2
92	Electron transfer reactions of singlet molecular oxygen with phenols. Journal of Physical Organic Chemistry, 2000, 13, 208-212.	1.9	8
93	Photophysical properties of corrphycenes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2000, 56, 2043-2048.	3.9	4
94	Kinetic Study of the Reactions of Chlorine Atoms and Cl2•- Radical Anions in Aqueous Solutions. 1. Reaction with Benzene. Journal of Physical Chemistry A, 2000, 104, 3117-3125.	2.5	159
95	Reaction of sulfate and phosphate radicals with $\hat{l}_{\pm},\hat{l}_{\pm}$ -trifluorotoluene. Journal of the Chemical Society Perkin Transactions II, 1999, , 205-210.	0.9	24
96	Kinetic evidence for the reaction of O?? radical ions and peroxodisulfate in alkaline aqueous solutions. International Journal of Chemical Kinetics, 1998, 30, 491-496.	1.6	7
97	Reactions of phosphate radicals with substituted benzenes. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 116, 21-25.	3.9	32
98	Corrigendum to "Photophysical properties of porphycene derivatives (18 π porphyrinoids)―[Journal of photochemistry and photobiology B: Biology 40 (1997) 191-198]. Journal of Photochemistry and Photobiology B: Biology, 1998, 42, 79.	3.8	2
99	Reactions of phosphate radicals with substituted benzenes. A structure–reactivity correlation study. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2933-2937.	1.7	25
100	Flash-photolysis Study of Potassium Hydroxide Solutionsâ€. Journal of Chemical Research Synopses, 1997, , 54-55.	0.3	2
101	Kinetics of the Reactions of O·â^' and HO· with α,α,α-Trifluorotoluene and 4-Fluorotolueneâ€. Journal of Chemical Research Synopses, 1997, , 172-173.	0.3	3
102	Flash-photolysis of di- $\hat{1}$ /4-oxo-bis(oxomolybdate(V)) in the presence of bromide ion. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 117-121.	3.9	3
103	Photophysical properties of porphycene derivatives (18 π porphyrinoids). Journal of Photochemistry and Photobiology B: Biology, 1997, 40, 191-198.	3.8	75
104	The catalytic effect of MoV on the oxidation of iodide by chlorate. Journal of Molecular Catalysis A, 1997, 123, 85-90.	4.8	8
105	Kinetics of O�? and O3�? in alkaline aqueous solutions of hydrogen peroxide. International Journal of Chemical Kinetics, 1997, 29, 589-597.	1.6	16
106	Base hydrolysis and aquation of trans-methyl-substituted acidopenta-amminecobalt(III) complexes. Polyhedron, 1996, 15, 1915-1921.	2.2	6
107	Oxidation of bromide by chlorate catalysed by MoV. Journal of Molecular Catalysis A, 1995, 99, 143-149.	4.8	8
108	Di- $\hat{1}$ /4-oxo-bis[oxomolybdates(V)] and their single-bridged photolysis intermediates. A semi-empirical study. Polyhedron, 1994, 13, 1411-1414.	2.2	5

#	Article	IF	CITATIONS
109	Spectroscopic and kinetic evidences for the formation of a 1â^¶1 mixed complex of MoV and VIV in perchloric medium. Transition Metal Chemistry, 1994, 19, 154-156.	1.4	2
110	Quantum Yield of Photosensitized Singlet Oxygen (a1.DELTA.g) Production in Solid Polystyrene. Macromolecules, 1994, 27, 4787-4794.	4.8	38
111	A kinetic study of the photodynamic properties of the xanthene dye merbromin (mercurochrome) and its aggregates with amino acids in aqueous solutions. Journal of Photochemistry and Photobiology B: Biology, 1993, 17, 247-255.	3.8	35
112	Singlet molecular oxygen [] production and quenching by hydroxybiphenyls. Chemosphere, 1993, 26, 1691-1701.	8.2	30
113	Photophysics and photochemistry of 22.pi. and 26.pi. acetylene-cumulene porphyrinoids. Journal of the American Chemical Society, 1992, 114, 9969-9978.	13.7	63
114	Hydroxyanthraquinones as sensitizers of singlet oxygen reactions: quantum yields of triplet formation and singlet oxygen generation in acetonitrile. Journal of Photochemistry and Photobiology A: Chemistry, 1992, 69, 155-165.	3.9	67
115	Influence of the ionic strength on O2($1\hat{l}$ "g) quenching by azide. Journal of Photochemistry and Photobiology A: Chemistry, 1992, 66, 153-157.	3.9	35
116	Triplet states of molecules undergoing internal double-proton transfer in the S1 state: 2,2′-bipyridyl-diol and its 5,5′-dimethylated derivative. Chemical Physics Letters, 1991, 185, 206-211.	2.6	30
117	Kinetics of the redox reaction between Mo2O42+ and VO2+ in HClO4 medium. Polyhedron, 1991, 10, 359-364.	2.2	8
118	POLYMER BOUND PYRROLE COMPOUNDS–VI. PHOTOPHYSICAL PROPERTIES OF MONOMERIC MODELS FOR POLYSTYRENE-BOUND PORPHYRINS. Photochemistry and Photobiology, 1991, 53, 185-193.	2.5	8
119	The flash photolysis of di- $\hat{1}$ /4-oxo-bis(oxo-molybdate(V)) acid aqueous solutions in the presence of excess thiocyanate. International Journal of Chemical Kinetics, 1991, 23, 457-472.	1.6	18
120	Sensitized photo-oxidation of dihydroxybenzenes and chlorinated derivatives. A kinetic study. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 61, 113-124.	3.9	49
121	Kinetic study of the molybdenum(VI)-l-histidine and molybdenum(VI)-imidazole systems. Polyhedron, 1989, 8, 2225-2232.	2.2	4
122	Linear enthalpy correlation in molybdenum(VI) octahedral substitutions. Polyhedron, 1989, 8, 1387-1389.	2.2	4
123	Ligand deprotonation significance in the formation of the molybdate ion-malic acid complexes. Polyhedron, 1988, 7, 2709-2714.	2.2	8