
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1926730/publications.pdf Version: 2024-02-01

HONG-PINC LIN

#	Article	IF	CITATIONS
1	Optimization for hydrogen production from methanol partial oxidation over Ni–Cu/Al2O3 catalyst under sprays. International Journal of Hydrogen Energy, 2022, 47, 40559-40572.	3.8	10
2	Interconnected Microporous and Mesoporous Carbon Derived from Pitch for Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 4462-4472.	3.2	5
3	Synthesis and regeneration of mesoporous Ni–Cu/Al2O4 catalyst in sub-kilogram-scale for methanol steam reforming reaction. International Journal of Hydrogen Energy, 2022, 47, 37542-37551.	3.8	14
4	Synthesis of Mesoporous Cu-Ni/Al2O4 Catalyst for Hydrogen Production via Hydrothermal Reconstruction Route. Catalysts, 2022, 12, 32.	1.6	2
5	Green and Highly-Efficient Microwave Synthesis Route for Sulfur/Carbon Composite for Li-S Battery. International Journal of Molecular Sciences, 2022, 23, 39.	1.8	6
6	Iridescent Colloidal Crystals Composed of SiO ₂ Porous Hollow Sphere for SERS Application. Langmuir, 2022, 38, 6217-6223.	1.6	6
7	Synthesis of mesoporous carbon platelets of high surface area and large porosity from polymer blendsâ€calcium phosphate nanocomposites for highâ€power supercapacitor. Journal of the Chinese Chemical Society, 2021, 68, 462-468.	0.8	3
8	Effects of morphology and pore size of mesoporous silicas on the efficiency of an immobilized enzyme. RSC Advances, 2021, 11, 10010-10017.	1.7	15
9	Green synthesis of nitrogen-doped multiporous carbons for oxygen reduction reaction using water-caltrop shells and eggshell waste. RSC Advances, 2021, 11, 15738-15747.	1.7	1
10	Surface Reaction Mechanisms: 3-Bromopropanoic and 2-Bromopropanoic Acids on Cu(100) and O/Cu(100). Journal of Physical Chemistry C, 2021, 125, 4567-4579.	1.5	1
11	The production of hydroâ€processed renewable diesel over the nonsulfide catalyst. International Journal of Energy Research, 2021, 45, 19043-19061.	2.2	7
12	Synthesis of High-Performance Photonic Crystal Film for SERS Applications via Drop-Coating Method. Coatings, 2020, 10, 679.	1.2	8
13	Green synthesis of porous <scp>Niâ€silicate</scp> catalyst for hydrogen generation via ammonia decomposition. International Journal of Energy Research, 2020, 44, 9748-9756.	2.2	9
14	Crystal growth in dentinal tubules with bio-calcium carbonate-silica sourced from equisetum grass. Journal of the Formosan Medical Association, 2020, 119, 1835-1841.	0.8	5
15	Application of metallic nanoparticle-biochars with ionic liquids for thermal transfer fluids. Chemosphere, 2020, 250, 126219.	4.2	11
16	Novel Renewable Double-Energy System for Activated Biochar Production and Thermoelectric Generation from Waste Heat. Energy & Fuels, 2020, 34, 3383-3393.	2.5	14
17	Synthesis of Multiporous Carbons from the Water Caltrop Shell for High-Performance Supercapacitors. ACS Omega, 2020, 5, 10626-10632.	1.6	23
18	Adsorption and reactions of propenoic acid and 2-fluoropropanoic acid on Cu(100) and O/Cu(100). Journal of Chemical Physics, 2019, 150, 164703.	1.2	6

#	Article	IF	CITATIONS
19	Simple In-House Fabrication of Microwells for Generating Uniform Hepatic Multicellular Cancer Aggregates and Discovering Novel Therapeutics. Materials, 2019, 12, 3308.	1.3	8
20	Novel calcium encapsulated mesocellular siliceous foams for crystal growth in dentinal tubules. Journal of Dentistry, 2019, 83, 61-66.	1.7	5
21	Synthesis of mesoporous Cu Fe/silicates catalyst for methanol steam reforming. International Journal of Hydrogen Energy, 2019, 44, 14416-14423.	3.8	19
22	Adsorption of metal ions with biochars derived from biomass wastes in a fixed column: Adsorption isotherm and process simulation. Journal of Industrial and Engineering Chemistry, 2019, 76, 240-244.	2.9	45
23	Template-free synthesis of mesoporous Mn3O4-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 627-633.	2.7	7
24	Biodegradable Gelatin as Template for the Preparation of Mesoporous Alumina. Journal of the Chinese Chemical Society, 2018, 65, 424-429.	0.8	4
25	Carbon fibers as three-dimensional current collectors for silicon/reduced graphene oxide lithium ion battery anodes with improved rate performance and cycle life. New Journal of Chemistry, 2018, 42, 9058-9064.	1.4	13
26	Oneâ€pot synthesis of sheetâ€like <scp>MFI</scp> as highâ€performance catalyst for toluene disproportionation. Journal of the American Ceramic Society, 2018, 101, 3719-3728.	1.9	8
27	Chemo-photothermal effects of doxorubicin/silica–carbon hollow spheres on liver cancer. RSC Advances, 2018, 8, 36775-36784.	1.7	14
28	Wavelength-Tunable and Highly Stable Perovskite-Quantum-Dot-Doped Lasers with Liquid Crystal Lasing Cavities. ACS Applied Materials & Interfaces, 2018, 10, 33307-33315.	4.0	62
29	A novel sol-gel-derived calcium silicate cement with short setting time for application in endodontic repair of perforations. International Journal of Nanomedicine, 2018, Volume 13, 261-271.	3.3	48
30	Rice Huskâ€derived Hierarchical Micro/Mesoporous Carbon–Silica Nanocomposite as Superior Filler for Green Electronic Packaging Material. Journal of the Chinese Chemical Society, 2017, 64, 427-433.	0.8	9
31	Hierarchical Micro/Mesoporous Carbons Synthesized with a ZnO Template and Petroleum Pitch via a Solvent-Free Process for a High-Performance Supercapacitor. ACS Omega, 2017, 2, 2106-2113.	1.6	31
32	Rice huskâ€derived porous carbon/silica particles as green filler for electronic package application. Journal of Applied Polymer Science, 2017, 134, .	1.3	11
33	Enhanced Thermal Stability in <scp>SiO₂</scp> /Carbon Filler Derived from Rice Husk via Microwave Treatment for Electronic Packaging Application. Journal of the Chinese Chemical Society, 2017, 64, 1035-1040.	0.8	2
34	Mesoporous SiO ₂ /carbon hollow spheres applied towards a high rate-performance Li-battery anode. Inorganic Chemistry Frontiers, 2016, 3, 1398-1405.	3.0	32
35	A mesoporous biomaterial for biomimetic crystallization in dentinal tubules without impairing the bonding of a self-etch resin to dentin. Journal of the Formosan Medical Association, 2016, 115, 455-462.	0.8	8
36	Mesoporous silica supported bimetallic Pd/Fe for enhanced dechlorination of tetrachloroethylene. RSC Advances, 2015, 5, 90797-90805.	1.7	12

#	Article	IF	CITATIONS
37	The photothermal effect of silica–carbon hollow sphere–concanavalin A on liver cancer cells. Journal of Materials Chemistry B, 2015, 3, 2447-2454.	2.9	12
38	Isolation of Bioâ€Mesoporous Silica from Rice Husk. Journal of the Chinese Chemical Society, 2014, 61, 836-840.	0.8	13
39	Nitrogen-doped mesoporous carbon hollow spheres as a novel carbon support for oxygen reduction reaction. New Journal of Chemistry, 2014, 38, 5521-5526.	1.4	19
40	Cyclic performance of CaCO ₃ @mSiO ₂ for CO ₂ capture in a calcium looping cycle. Journal of Materials Chemistry A, 2014, 2, 8252-8257.	5.2	46
41	Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013, 42, 3862.	18.7	1,236
42	Surface State Mediated NIR Twoâ€Photon Fluorescence of Iron Oxides for Nonlinear Optical Microscopy. Advanced Functional Materials, 2013, 23, 2044-2051.	7.8	22
43	Chemical Structure of TiO2Nanotube Photocatalysts Promoted by Copper and Iron. International Journal of Photoenergy, 2013, 2013, 1-7.	1.4	6
44	Catalytic performance of plate-type Cu/Fe nanocomposites on ZnO nanorods for oxidative steam reforming of methanol. Chemical Communications, 2011, 47, 1473-1475.	2.2	19
45	Synthesis of magnetic hollow nanotubes based on the kirkendall effect for MR contrast agent and colorimetric hydrogen peroxide sensor. Journal of Materials Chemistry, 2011, 21, 7974.	6.7	22
46	Green Catalysts Derived from Agricultural and Industrial Waste Products: The Preparation of Phenols from CsOH and Aryl Iodides using CuO on Mesoporous Silica. European Journal of Organic Chemistry, 2011, 2011, 7288-7293.	1.2	33
47	Mesoporous silica SBA-15 sheet with perpendicular nanochannels. Journal of Colloid and Interface Science, 2011, 362, 354-366.	5.0	37
48	Synthesis of mono-dispersion mesoporous silica vesicles and spheres in 50–200 nm by using cationic-anionic binary surfactant as mesostructural template. , 2009, , .		0
49	An immunoassay using antibody-gold nanoparticle conjugate, silver enhancement and flatbed scanner. Microfluidics and Nanofluidics, 2009, 6, 85-91.	1.0	64
50	An immunoassay using an electro-microchip, nanogold probe and silver enhancement. Microfluidics and Nanofluidics, 2009, 6, 93-98.	1.0	8
51	Morphological control on SBA-15 mesoporous silicas via a slow self-assembling rate. Journal of Materials Science, 2009, 44, 6453-6462.	1.7	31
52	A novel SERS active particle with highly bio-organics absorption affinity for the description of bacteria fingerprint. , 2009, , .		0
53	Synthesis of mesoporous carbons of high surface area and porosity by using polymer blends as template. Journal of Solid State Electrochemistry, 2008, 12, 895-901.	1.2	3
54	Microstructures, surface areas, and oxygen absorption of Ti and Ti–Zr–V films grown using glancing-angle sputtering. Journal of Materials Research, 2008, 23, 579-587.	1.2	7

#	Article	IF	CITATIONS
55	Preparation of Mesoporous Silica and Carbon Using Gelatin or Gelatin–Phenol–Formaldehyde Polymer Blend as Template. Chemistry Letters, 2007, 36, 1258-1259.	0.7	18
56	Synthesis of Carbon and Silica Hollow Spheres with Mesoporous Shells using Polyethylene Oxide/Phenol Formaldehyde Polymer Blend. European Journal of Inorganic Chemistry, 2007, 2007, 3798-3804.	1.0	24
57	Synthesis of p6mm hexagonal mesoporous carbons and silicas using Pluronic F127–PF resin polymer blends. Microporous and Mesoporous Materials, 2006, 93, 344-348.	2.2	52
58	Synthesis of porous carbon and silica spheres using PEO-PF polymer blends. Journal of Porous Materials, 2006, 13, 195-199.	1.3	11
59	EFFECT OF THE HEATING RATE FOR PREHEATING PROCESS ON THE COMPOSITION AND PHASE TRANSFORMATION OF SOL-GEL DERIVED LEAD ZIRCONATE TITANATE THIN FILM. Integrated Ferroelectrics, 2005, 75, 55-68.	0.3	3
60	Synthesis of Carbon Nanofoams and Nanospheres by Varying Ratio of Phenol–Formaldehyde Resin to Mesoporous Silica Foams. Chemistry Letters, 2004, 33, 1574-1575.	0.7	8
61	Control of single crystal morphology of SBA-1 mesoporous silica. Journal of Materials Chemistry, 2003, 13, 2853.	6.7	49
62	Detailed Structural Characterizations of SBAâ€15 and MCMâ€41 Mesoporous Silicas on a Highâ€Resolution Transmission Electron Microscope. Journal of the Chinese Chemical Society, 2002, 49, 981-988.	0.8	21
63	Optimum Synthesis of Mesoporous Silica Materials from Acidic Condition. Journal of the Chinese Chemical Society, 2002, 49, 899-906.	0.8	5
64	Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica. Accounts of Chemical Research, 2002, 35, 927-935.	7.6	393
65	Counterion Effect in Acid Synthesis of Mesoporous Silica Materials. Journal of Physical Chemistry B, 2000, 104, 7885-7894.	1.2	105
66	Extensive Void Defects in Mesoporous Aluminosilicate MCM-41. Journal of Physical Chemistry B, 2000, 104, 8967-8975.	1.2	167
67	Kinetic study of the Ce(III)- or ferroin-catalyzed Belousov-Zhabotinsky reaction with ethyl- or butyl-malonic acid. International Journal of Chemical Kinetics, 1996, 28, 345-351.	1.0	17
68	Kinetics of Oxidation of Diphenylmethane and Derivatives with Ce(IV) in Aqueous Acidic Acetonitrile. Journal of the Chinese Chemical Society, 1994, 41, 519-526.	0.8	1
69	The Mn(II)â€Catalyzed Belousovâ€Zhabotinsky Reaction with Methylâ€, Ethyl―or Butylâ€Malonic Acid. Journal of the Chinese Chemical Society, 1994, 41, 651-658.	0.8	10
70	A novel real-time immunoassay approach utilizing an electro-immunosensing microchip. , 0, , .		0