Alberto Morgante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1926721/publications.pdf

Version: 2024-02-01

76294 82499 5,967 177 40 72 citations h-index g-index papers 178 178 178 6308 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Atomic-Scale Structure and Catalytic Reactivity of the RuO2(110) Surface. Science, 2000, 287, 1474-1476.	6.0	829
2	X-ray Diffraction and Computation Yield the Structure of Alkanethiols on Gold(111). Science, 2008, 321, 943-946.	6.0	279
3	Structure of aCH3SMonolayer on Au(111) Solved by the Interplay between Molecular Dynamics Calculations and Diffraction Measurements. Physical Review Letters, 2007, 98, 016102.	2.9	204
4	Defect States at the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">(<mml:mn>110</mml:mn><mml:mo) 0="" 10="" 50="" 617="" etqq0="" overlock="" rgbt="" td="" td<="" tf="" tj=""><td>(stzetchy:</td><td>="false">)</td></mml:mo)></mml:mo </mml:math>	(st ze tchy:	="f alse ">)
5	Physical Review Letters, 2008, 100, 055501. Performance of the grating-crystal monochromator of the ALOISA beamline at the Elettra Synchrotron. Review of Scientific Instruments, 1999, 70, 3855-3864.	0.6	175
6	Zwitterionic self-assembly of L-methionine nanogratings on the $Ag(111)$ surface. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5279-5284.	3.3	163
7	Periodic Arrays of Cu-Phthalocyanine Chains on Au(110). Journal of Physical Chemistry C, 2008, 112, 10794-10802.	1.5	138
8	Site-specific electronic and geometric interface structure of Co-tetraphenyl-porphyrin layers on Ag(111). Physical Review B, 2010, 81 , .	1.1	124
9	High resolution X-ray photoelectron spectroscopy of l-cysteine self-assembled films. Physical Chemistry Chemical Physics, 2004, 6, 4042.	1.3	112
10	Ultrahigh Vacuum Deposition of l-Cysteine on Au(110) Studied by High-Resolution X-ray Photoemission: From Early Stages of Adsorption to Molecular Organization. Journal of Physical Chemistry B, 2005, 109, 18003-18009.	1,2	112
11	Quantifying through-space charge transfer dynamics in π-coupled molecular systems. Nature Communications, 2012, 3, 1086.	5.8	108
12	Spectromicroscopy of single and multilayer graphene supported by a weakly interacting substrate. Physical Review B, 2008, 78, .	1.1	105
13	Relating Energy Level Alignment and Amine-Linked Single Molecule Junction Conductance. Nano Letters, 2010, 10, 2470-2474.	4.5	95
14	Nonadiabatic surface reaction: Mechanism of electron emission in the Cs+O2system. Physical Review Letters, 1990, 65, 2035-2037.	2.9	93
15	Probing the mechanism for graphene nanoribbon formation on gold surfaces through X-ray spectroscopy. Chemical Science, 2014, 5, 4419-4423.	3.7	81
16	Corrugation in Exfoliated Graphene: An Electron Microscopy and Diffraction Study. ACS Nano, 2010, 4, 4879-4889.	7.3	78
17	intrinsic Nature of the Excess Electron Distribution at the <mmi:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>110</mml:mn><mml:mo) 0.784314="" 1="" 10="" 50<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>2.9 0 87 Td (st</td><td>69 cretchy="fal<mark>se</mark></td></mml:mo)></mmi:math>	2.9 0 87 Td (st	69 cretchy="fal <mark>se</mark>
18	A new model for atom–atom potentials. Journal of Chemical Physics, 1994, 100, 2052-2057.	1.2	65

#	Article	IF	Citations
19	Oâ^'escape during the oxidation of cesium. Physical Review Letters, 1993, 70, 1331-1334.	2.9	64
20	Determination of the structure and geometry of N-heterocyclic carbenes on Au(111) using high-resolution spectroscopy. Chemical Science, 2019, 10, 930-935.	3.7	64
21	Exoelectron emission during oxidation of Cs films. Journal of Chemical Physics, 1991, 95, 3756-3766.	1.2	63
22	Anisotropic Ordered Planar Growth of \hat{l}_{\pm} -Sexithienyl Thin Films. Journal of Physical Chemistry B, 1999, 103, 7788-7795.	1.2	62
23	Emission-Depth-Selective Auger Photoelectron Coincidence Spectroscopy. Physical Review Letters, 2005, 94, 038302.	2.9	62
24	Step Height Oscillations during Layer-by-Layer Growth of Pb on Ge(001). Physical Review Letters, 1997, 79, 1527-1530.	2.9	58
25	Electronic states of CuPc chains on the Au(110) surface. Journal of Chemical Physics, 2009, 131, 174710.	1.2	58
26	Stoichiometry-related Auger lineshapes in titanium oxides: Influence of valence-band profile and of Coster-Kronig processes. Physical Review B, 2004, 69, .	1.1	55
27	The ALOISA end station at Elettra:. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1468-1472.	0.7	54
28	The Environment-Dependent Behavior of the Blatter Radical at the Metal–Molecule Interface. Nano Letters, 2019, 19, 2543-2548.	4.5	54
29	Customized Electronic Coupling in Selfâ€Assembled Donor–Acceptor Nanostructures. Advanced Functional Materials, 2009, 19, 3567-3573.	7.8	52
30	$\mbox{\scp}\sc$	7.3	50
31	Pentacene Nanorails on Au(110). Langmuir, 2008, 24, 767-772.	1.6	48
32	Making angle-resolved photoemission measurements on corrugated monolayer crystals: Suspended exfoliated single-crystal graphene. Physical Review B, 2011, 84, .	1.1	47
33	Atomically Resolved Images from Near Node Photoelectron Holography Experiments on Al(111). Physical Review Letters, 2001, 86, 2337-2340.	2.9	46
34	Copperâ^'Phthalocyanine Induced Reconstruction of Au(110)â€. Journal of Physical Chemistry B, 2004, 108, 14671-14676.	1.2	46
35	Electronic structure and molecular orientation of a Zn-tetra-phenyl porphyrin multilayer on Si(111). Surface Science, 2006, 600, 4013-4017.	0.8	44
36	Donor–Acceptor Shape Matching Drives Performance in Photovoltaics. Advanced Energy Materials, 2013, 3, 894-902.	10.2	43

#	Article	IF	CITATIONS
37	Preparation and characterization of thin CsAu films. Thin Solid Films, 1991, 203, 131-145.	0.8	42
38	Photoelectron–Auger electron coincidence study for condensed matter. Journal of Electron Spectroscopy and Related Phenomena, 2004, 141, 149-159.	0.8	42
39	Self-Assembly of <scp>l</scp> -Methionine on Cu(111): Steering Chiral Organization by Substrate Reactivity and Thermal Activation. Journal of Physical Chemistry C, 2009, 113, 12101-12108.	1.5	41
40	Mesoscopic Donorâ^'Acceptor Multilayer by Ultrahigh-Vacuum Codeposition of Zn-Tetraphenyl-Porphyrin and C70. Journal of the American Chemical Society, 2009, 131, 644-652.	6.6	41
41	Compact He beam scattering apparatus for surface studies. Measurement Science and Technology, 1992, 3, 997-1000.	1.4	40
42	Electronic and Geometric Characterization of thel-Cysteine Paired-Row Phase on Au(110). Langmuir, 2006, 22, 11193-11198.	1.6	40
43	In situstudy of pentacene interaction with archetypal hybrid contacts: Fluorinated versus alkane thiols on gold. Physical Review B, 2010, 82, .	1.1	40
44	High resolution XPS of the S 2p core level region of the L-cysteine/gold interface. Journal of Physics Condensed Matter, 2004, 16, S2477-S2482.	0.7	39
45	He beam study of deconstruction and roughening of Au(110)(1 \tilde{A} — 2). Surface Science, 1992, 269-270, 68-73.	0.8	38
46	Singlet-to-triplet conversion of metastable He atoms at alkali-metal overlayers. Physical Review B, 1994, 49, 10607-10612.	1.1	37
47	Heterostructured organic interfaces probed by resonant photoemission. Surface Science, 2009, 603, 1542-1556.	0.8	36
48	Ultrafast Charge Transfer through Noncovalent Au–N Interactions in Molecular Systems. Journal of Physical Chemistry C, 2013, 117, 16477-16482.	1.5	36
49	On-surface synthesis of a 2D boroxine framework: a route to a novel 2D material?. Chemical Communications, 2018, 54, 3971-3973.	2.2	36
50	Interaction strength and molecular orientation of a single layer of pentacene in organic-metal interface and organic-organic heterostructure. Physical Review B, 2008, 77, .	1.1	33
51	High resolution X-ray photoelectron spectroscopy of 3-mercaptopropionic acid self-assembled films. Surface Science, 2004, 566-568, 638-643.	0.8	32
52	Tailoring SAM-on-SAM Formation. Journal of Physical Chemistry Letters, 2011, 2, 3124-3129.	2.1	32
53	Quantum size effects in the low temperature layer-by-layer growth of Pb on Ge(001). Progress in Surface Science, 2003, 72, 135-159.	3.8	31
54	Phase Diagram of Pentacene Growth on Au(110). Journal of Physical Chemistry B, 2006, 110, 4908-4913.	1.2	31

#	Article	IF	CITATIONS
55	Association of USF1 and APOA5 polymorphisms with familial combined hyperlipidemia in an Italian population. Molecular and Cellular Probes, 2015, 29, 19-24.	0.9	31
56	Changes of the Molecule–Substrate Interaction upon Metal Inclusion into a Porphyrin. Chemistry - A European Journal, 2012, 18, 12619-12623.	1.7	30
57	Order-disorder transition of the $(3\tilde{A}-3)$ Sn/Ge (111) phase. Physical Review B, 2001, 64, .	1.1	28
58	Exoelectron emission at Cs surfaces by accelerated O2 molecules. Chemical Physics Letters, 1994, 231, 119-122.	1.2	27
59	Growth, structure and epitaxy of ultrathin NiO films on Ag(001). Thin Solid Films, 2001, 400, 139-143.	0.8	27
60	Order-disorder character of the (3×3) to (3×3) R30° phase transition of Sn on Ge (111). Physical Review B, 2001, 64, .	1.1	27
61	Ordering of a prototypical conjugated molecular system during monolayer growth on the $(1\tilde{A}-2)$ -Au (110) surface. Physical Review B, 1996, 53, 1095-1098.	1.1	26
62	Determination of the $(3\tilde{A}-3)\hat{a}^3$ Sn/Ge (111) structure by photoelectron diffraction. Physical Review B, 2001, 63, .	1.1	26
63	Molecular orientations, electronic properties and charge transfer timescale in a Zn-porphyrin/C70 donor–acceptor complex for solar cells. Surface Science, 2006, 600, 4018-4023.	0.8	26
64	Comment on "Local Methylthiolate Adsorption Geometry on Au(111) from Photoemission Core-Level Shifts― Physical Review Letters, 2009, 103, 119601; author reply 119602.	2.9	26
65	ANCHOR-SUNDYN: A novel endstation for time resolved spectroscopy at the ALOISA beamline. Journal of Electron Spectroscopy and Related Phenomena, 2018, 229, 7-12.	0.8	26
66	Deuterium scattering from Rh(110) surface. Journal of Chemical Physics, 1996, 104, 7778-7783.	1.2	25
67	Trimethyltin-Mediated Covalent Gold–Carbon Bond Formation. Journal of the American Chemical Society, 2014, 136, 12556-12559.	6.6	25
68	Electronic properties of the ordered metallic Mn:Ge(111) interface. Physical Review B, 2005, 72, .	1,1	24
69	Substrate Influence for the Znâ€tetraphenylâ€porphyrin Adsorption Geometry and the Interfaceâ€Induced Electron Transfer. ChemPhysChem, 2010, 11, 2248-2255.	1.0	24
70	Exoelectron emission during the oxidation of Na films. Surface Science, 1993, 280, 170-178.	0.8	23
71	A synchrotron radiation study of NO and oxygen on Rh(110). Surface Science, 1993, 285, 227-236.	0.8	22
72	A synchrotron radiation study of NO, CO and hydrogen adsorption on Rh(110). Surface Science, 1994, 317, 397-406.	0.8	22

#	Article	IF	Citations
73	Surface to bulk charge transfer at an alkali metal/metal oxide interface. Surface Science, 2003, 547, L859-L864.	0.8	22
74	The (2 $ ilde{A}-$ 2) p2mg to phase transition. Surface Science, 1993, 281, L321-L325.	0.8	21
75	Disordering of the Ge(001) surface studied by He atom scattering. Surface Science, 2000, 447, L147-L151.	0.8	20
76	Electronic properties of the boroxine–gold interface: evidence of ultra-fast charge delocalization. Chemical Science, 2017, 8, 3789-3798.	3.7	18
77	Picosecond timescale tracking of pentacene triplet excitons with chemical sensitivity. Communications Physics, 2019, 2, .	2.0	18
78	Low-energy vibrations at the InSb(110) surface. Physical Review B, 1995, 52, 16720-16726.	1.1	17
79	Ultrafast Bidirectional Charge Transport and Electron Decoherence at Molecule/Surface Interfaces: A Comparison of Gold, Graphene, and Graphene Nanoribbon Surfaces. Nano Letters, 2015, 15, 8316-8321.	4.5	17
80	Dissociation of CH species on Ni(111): A HREELS study. Surface Science, 1989, 211-212, 829-836.	0.8	16
81	Quantitative structure determination of (1 $ ilde{A}$ — 2)-Rh(110) by helium scattering. Surface Science, 1993, 298, 1-5.	0.8	16
82	Intra-atomic versus interatomic process in resonant Auger spectra at the TiL23edges in rutile. Physical Review B, 2001, 64, .	1,1	16
83	C70 adsorbed on Cu(111): Metallic character and molecular orientation. Journal of Chemical Physics, 2002, 116, 7685-7690.	1.2	16
84	Ultrafast Charge Transfer Pathways Through A Prototype Amino-Carboxylic Molecular Junction. Nano Letters, 2016, 16, 1955-1959.	4.5	16
85	VARIATIONS IN THE LIFETIME OF 3d HOLE STATES IN ULTRATHIN Fe FILMS GROWN ON Cu(100) DEDUCED FROM THE LMM AUGER SPECTRA OF Fe. Surface Review and Letters, 2002, 09, 709-716.	0.5	15
86	Intermolecular Hydrogen Bonding and Molecular Orbital Distortion in 4-Hydroxycyanobenzene Investigated by X-ray Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 121-129.	1.5	15
87	ON THE DISSOCIATION OF O2 ON ALKALI METALS. Surface Review and Letters, 1995, 02, 273-277.	0.5	14
88	Ejection of Oâ^' ions by interaction of O2 with Ru(0001) covered with submonolayers of Cs. Surface Science, 1996, 359, L461-L466.	0.8	14
89	DETERMINATION OF TiO2(110) SURFACE RELAXATION BY VARIABLE POLARIZATION PHOTOELECTRON DIFFRACTION. Surface Review and Letters, 1999, 06, 1201-1206.	0.5	14
90	A competitive amino-carboxylic hydrogen bond on a gold surface. Chemical Communications, 2015, 51, 5739-5742.	2.2	14

#	Article	IF	Citations
91	First results from the new optical configuration for a synchrotron radiation monochromator applied to the ALOISA beamline. , 1997, , .		13
92	Electronic properties of Cs+CO coadsorbed on the Ru(0001) surface. Journal of Chemical Physics, 1998, 108, 774-799.	1.2	13
93	From bilayer to trilayer Fe nanoislands onCu3Au(001). Physical Review B, 2002, 65, .	1.1	13
94	Resonant photoelectron and photoelectron diffraction across theFe L3edge ofFe3O4. Physical Review B, 2010, 81, .	1.1	13
95	Lengthâ€Independent Charge Transport in Chimeric Molecular Wires. Angewandte Chemie - International Edition, 2016, 55, 14267-14271.	7.2	13
96	Temperature behavior of the (\hat{a}	0.8	12
97	PHOTOELECTRON DIFFRACTION STUDY OF THE $(3\tilde{A}-3)$ -Sn/Ge (111) STRUCTURE. Surface Review and Letters, 1999, 06, 1091-1096.	0.5	12
98	Bottom-up synthesis of nitrogen-containing graphene nanoribbons from the tetrabenzopentacene molecular motif. Carbon, 2020, 170, 677-684.	5.4	12
99	Switching of the Au(110) reconstruction by Ag deposition and alloying. Surface Science, 1987, 189-190, 620-627.	0.8	11
100	He scattering from Rh(110). Surface Science, 1993, 282, 273-278.	0.8	11
101	Electron density and structure of the $(1\tilde{A}-2)$ -Au (110) surface studied by He-beam scattering. Physical Review B, 1993, 47, 6705-6710.	1.1	11
102	Deconstruction and roughening transitions on $(1x2)$ Pt (110) . Solid State Communications, 1994, 91, 539-543.	0.9	11
103	Lead Phthalocyanine Films by Near Edge X-ray Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 12467-12471.	1.5	11
104	Binding Geometry of Hydrogen-Bonded Chain Motif in Self-Assembled Gratings and Layers on Ag(111). Langmuir, 2012, 28, 14291-14300.	1.6	11
105	Ultrafast electron injection into photo-excited organic molecules. Physical Chemistry Chemical Physics, 2016, 18, 22140-22145.	1.3	11
106	Cyclopropenylidenes as Strong Carbene Anchoring Groups on Au Surfaces. Journal of the American Chemical Society, 2020, 142, 19902-19906.	6.6	11
107	Pseudomorphic to orthomorphic growth of Fe films onCu3Au(001). Physical Review B, 2002, 66, .	1.1	10
108	Structure and magnetism of Fe/Cu() thin films. Surface Science, 2002, 507-510, 324-329.	0.8	10

#	Article	IF	Citations
109	Study of the isotropic contribution to the analysis of photoelectron diffraction experiments at the ALOISA beamline. Journal of Electron Spectroscopy and Related Phenomena, 2002, 127, 85-92.	0.8	10
110	Pseudomorphic-to-bulk fcc phase transition of thin Ni films on Pd(100). Physical Review B, 2004, 70, .	1.1	10
111	Surface and electronic properties of the Mn:Ge(111) interface at the early stages of growth. Surface Science, 2006, 600, 4369-4374.	0.8	10
112	Defects at the TiO2(100) surface probed by resonant photoelectron diffraction. Surface Science, 2007, 601, 3952-3955.	0.8	10
113	Structure and Energy Level Alignment of Tetramethyl Benzenediamine on Au(111). Journal of Physical Chemistry C, 2011, 115, 12625-12630.	1.5	10
114	Disorder-order evolution of InSb(110) studied by He scattering. Surface Science, 1994, 307-309, 519-525.	0.8	9
115	Molecular orientation of C60 on Pt(111) determined by X-ray photoelectron diffraction. Applied Surface Science, 2003, 212-213, 57-61.	3.1	9
116	Computational Study of Amino Mediated Molecular Interaction Evidenced in N 1s NEXAFS: 1,4-Diaminobenzene on Au (111). Journal of Physical Chemistry C, 2015, 119, 1988-1995.	1.5	9
117	Additive Driven Increase in Donor–Acceptor Copolymer Coupling Studied by X-ray Resonant Photoemission. Journal of Physical Chemistry C, 2017, 121, 25187-25194.	1.5	9
118	Vacancy island nucleation and inverse growth of InSb(110). Physical Review B, 1995, 51, 17957-17964.	1.1	8
119	Inverse growth kinetics on InSb(110). Surface Science, 1995, 323, L305-L310.	0.8	8
120	Molecular orientation of CN adsorbed on Pd(110). Journal of Chemical Physics, 2003, 118, 10735-10740.	1.2	8
121	Surfactant effect and dissolution of ultrathinFefilms onAg(001). Physical Review B, 2004, 70, .	1.1	8
122	Local order and hybridization effects for Mn ions probed by resonant soft x-ray spectroscopies: The Mn:CdTe(110) interface revisited. Physical Review B, 2010, 81, .	1.1	8
123	Rippling of graphitic surfaces: a comparison between few-layer graphene and HOPG. Physical Chemistry Chemical Physics, 2018, 20, 13322-13330.	1.3	8
124	Photoemission investigation of the reconstructed Au(110) surface. Surface Science, 1992, 271, 179-183.	0.8	7
125	Elastic and inelastic interactions of He and Ne atoms with metal surfaces. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 671-675.	0.8	7
126	Evolution of the missing row deconstruction on Rh (110). Surface Science, 1994, 318, L1193-L1200.	0.8	7

#	Article	IF	Citations
127	Ultra-high-vacuum single-layer formation of \hat{l}_{\pm} -hexathienyl on the (1 \hat{A} —2) Au(110) surface. Synthetic Metals, 1996, 76, 173-176.	2.1	7
128	Resonant L2MV and L3MV Auger transitions in titanium dioxide. Surface Science, 2001, 482-485, 453-457.	0.8	7
129	Giant resonant photoemission at the Mn2pâ†'3dabsorption threshold ofCd1â^'xMnxTe. Physical Review B, 2003, 67, .	1.1	7
130	Local coordination of Mn atoms at the Mn:Ge(111) interface from photoelectron diffraction experiments. Physical Review B, 2008, 77, .	1.1	7
131	A Ru–Ru pair housed in ruthenium phthalocyanine: the role of a "cage―architecture in the molecule coupling with the Ag(111) surface. Physical Chemistry Chemical Physics, 2017, 19, 1449-1457.	1.3	7
132	Unusual disordering processes of oxygen overlayers on Rh(111): A combined diffraction study using thermal He atoms and low-energy electrons. Physical Review B, 1997, 55, 4717-4722.	1.1	6
133	Comparison of the electronic structure and surface geometry of the metastableCs+Ooverlayers on Ru(0001). Physical Review B, 2000, 61, 8455-8461.	1.1	6
134	Surface and bulk contributions in magnetic linear dichroism in the angular dependence from ferromagnetic transition metals. Physical Review B, 2002, 66, .	1.1	6
135	EPITAXY OF ULTRATHIN CoO FILMS STUDIED BY XPD AND GIXRD. Surface Review and Letters, 2002, 09, 937-941.	0.5	6
136	Wurtzite structure in ultrathin ZnO films on Fe(110): Surface x-ray diffraction and <i>ab initio </i> calculations. Physical Review B, 2014, 90, .	1.1	6
137	On-surface trapping of alkali atoms by crown ethers in ultra high vacuum. Nanoscale Advances, 2019, 1, 1721-1725.	2.2	6
138	Surface burgers vectors and surface defects. Surface Science, 1993, 297, 235-244.	0.8	5
139	Electron density of $(1\tilde{A}-2)$ Pt (110) from He reflectivity measurements. Physical Review B, 1995, 51, 11055-11060.	1.1	5
140	Impact of bulk reduction on TiO2(100)/K. Surface Science, 2004, 566-568, 921-925.	0.8	5
141	Selectivity of Auger Decays to the Local Surface Environment. Physical Review Letters, 2004, 93, 206802.	2.9	5
142	Resonant valence-band photoemission spectroscopy on the Fe62Ni2OCr18 alloy. European Physical Journal B, 2005, 43, 463-470.	0.6	5
143	Electronic properties of a pure and sodium-doped C70 single layer adsorbed on Al polycrystalline surface. Journal of Chemical Physics, 2005, 122, 054704.	1.2	5
144	Unexpected length dependence of excited-state charge transfer dynamics for surface-confined perylenediimide ensembles. Materials Horizons, 2017, 4, 437-441.	6.4	5

#	Article	IF	CITATIONS
145	Strong Chemical Interaction and Self-Demetalation of Zinc-Phthalocyanine on Al(100). Journal of Physical Chemistry C, 2020, 124, 22550-22558.	1.5	5
146	Photo-induced lattice distortion in 2H-MoTe ₂ probed by time-resolved core level photoemission. Faraday Discussions, 2022, 236, 429-441.	1.6	5
147	Metallic phases of a C70 single layer adsorbed on Cu(111) doped with sodium. Surface Science, 2003, 532-535, 892-897.	0.8	4
148	Temperature Driven Reversible Breakdown of Pseudomorphism in UltrathinFe/Cu3AuFilms. Physical Review Letters, 2004, 93, 106103.	2.9	4
149	XPS and STM study of Mn incorporation on the GaAs(001) surface. Superlattices and Microstructures, 2009, 46, 258-265.	1.4	4
150	C-reactive protein levels are associated with paraoxonase polymorphism L55M in patients undergoing cardiac SPECT imaging. Scandinavian Journal of Clinical and Laboratory Investigation, 2011, 71, 179-184.	0.6	4
151	Tuning ultrafast electron injection dynamics at organic-graphene/metal interfaces. Nanoscale, 2018, 10, 8014-8022.	2.8	4
152	Methylamine terminated molecules on Ni(1 1 1): A path to low temperature synthesis of nitrogen-doped graphene. FlatChem, 2020, 24, 100205.	2.8	4
153	Selfâ€metalation of porphyrins at the solidâ€gas interface. Angewandte Chemie - International Edition, 2021, 60, 25988-25993.	7.2	4
154	Excitation density in time-resolved water window soft X-ray spectroscopies: Experimental constraints in the detection of excited states. Journal of Electron Spectroscopy and Related Phenomena, 2022, 254, 147141.	0.8	4
155	Terrace distribution during sputtering and recovery of $InSb(110)$ studied by He-atom scattering. Physical Review B, 1995, 52, 14941-14946.	1.1	3
156	Electronic properties of the Mn–CdTe(110) interface probed by resonant photoemission at the Mn 2p–3d absorption threshold. Surface Science, 2004, 566-568, 508-514.	0.8	3
157	Displacive phase transition at the 5â-3 monolayer of Pb on Ge (001). Physical Review B, 2005, 72, .	1.1	3
158	Tracking the excitation dynamics in the Mn:Ge(111) metallic interface by resonant electron spectroscopy. Journal of Physics Condensed Matter, 2012, 24, 235502.	0.7	3
159	Morphological modulation of graphene-mediated hybridization in plasmonic systems. Physical Chemistry Chemical Physics, 2016, 18, 27493-27499.	1.3	3
160	Angular correlation in Auger photoelectron coincidence spectroscopy from the Cu(111) surface. European Physical Journal Special Topics, 1999, 09, Pr6-161-Pr6-164.	0.2	3
161	Interaction of He and Ne with Cu surfaces. Surface Science, 1997, 377-379, 710-713.	0.8	2
162	Coadsorption of Cs with O and CO on Ru(0001): relation between structural and electronic properties. Progress in Surface Science, 2000, 64, 211-223.	3.8	2

#	Article	IF	Citations
163	Imaging atom sites with near node photoelectron holography. Europhysics News, 2001, 32, 172-175.	0.1	2
164	Structure modulated LMDAD effects in BCC-Fe vs. RCP-Fe. Journal of Magnetism and Magnetic Materials, 2001, 233, 123-126.	1.0	2
165	Local electronic properties and magnetism of (Cd,Mn)Te quantum wells. Applied Physics Letters, 2010, 96, 142105.	1.5	2
166	Early stages of formation of the Ag-Ni(111) interface studied by grazing incidence x-ray diffraction and x-ray photoelectron diffraction. Physical Review B, 2011, 84, .	1.1	2
167	Characterization of early growth stages of Pb/Ge(001). Surface Science, 2014, 630, 260-264.	0.8	2
168	Time resolved resonant photoemission study of energy level alignment at donor/acceptor interfaces. Chemical Physics Letters, 2017, 683, 135-139.	1.2	2
169	Pump–Probe X-ray Photoemission Reveals Light-Induced Carrier Accumulation in Organic Heterojunctions. Journal of Physical Chemistry C, 2020, 124, 26603-26612.	1.5	2
170	On-Surface Synthesis of Boroxine-Based Molecules. Chemistry, 2021, 3, 1401-1410.	0.9	2
171	The (2 $ ilde{A}$ — 2) p2mg to (1 $ ilde{A}$ — 2) O/Rh(110) phase transition. Surface Science Letters, 1993, 281, 321-325.	0.1	1
172	L2L3V Coster Kronig decay in Fe, Ni and NiO: the near edge region. Journal of Electron Spectroscopy and Related Phenomena, 2002, 127, 71-76.	0.8	1
173	Resonant photoemission from Cd0.82Mn0.18Te single crystals at the Mn 2p → 3d absorption threshold. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 553-557.	0.8	1
174	Lengthâ€Independent Charge Transport in Chimeric Molecular Wires. Angewandte Chemie, 2016, 128, 14479-14483.	1.6	1
175	Light-Induced Charge Accumulation in PTCDI/Pentacene/Ag(111) Heterojunctions. Chemistry, 2021, 3, 744-752.	0.9	1
176	P398 EXPRESSION OF INFLAMMATION-RELATED GENES IN HUMAN ATHEROSCLEROTIC PLAQUES. Atherosclerosis Supplements, 2010, 11, 101.	1.2	0
177	Fe nanoparticles on ZnSe: Reversible temperature dependence of the surface barrier potential. Physical Review B, 2012, 85, .	1.1	0