
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1926183/publications.pdf Version: 2024-02-01

RDINDARAN C RANIL

#	Article	IF	CITATIONS
1	Learning Green Chemistry and its principles from Nature's process and development of green procedures mimicking nature. Chemistry Teacher International, 2022, 4, 127-141.	1.7	4
2	Mechanochemical synthesis of coumarins <i>via</i> Pechmann condensation under solvent-free conditions: an easy access to coumarins and annulated pyrano[2,3- <i>f</i>] and [3,2- <i>f</i>]indoles. Green Chemistry, 2022, 24, 2429-2437.	9.0	14
3	Copper nanoparticles catalyzed carbon–heteroatom bond formation and synthesis of related heterocycles by greener procedures. ChemistrySelect, 2022, .	1.5	0
4	Mechanochemically Induced Cross Dehydrogenative Coupling Reactions under Ball Milling. Advanced Synthesis and Catalysis, 2022, 364, 2462-2478.	4.3	8
5	Synthesis of Organosulfur and Related Heterocycles under Mechanochemical Conditions. Journal of Organic Chemistry, 2021, 86, 13895-13910.	3.2	16
6	Ball milling: an efficient and green approach for asymmetric organic syntheses. Green Chemistry, 2020, 22, 302-315.	9.0	135
7	Mechanochemically Induced Chalcogenation of Bicyclic Arenes under Solventâ€; Ligandâ€; Metalâ€; and Oxidantâ€Free Conditions. ChemistrySelect, 2020, 5, 14198-14202.	1.5	10
8	1. Synthesis of Organoselenides by Coupling Reaction and C–H Activation – Recent Advances. , 2020, , 1-28.		0
9	Direct Asymmetric Arylation of Imines. Advanced Synthesis and Catalysis, 2020, 362, 4293-4324.	4.3	24
10	Recent Progress on Carbon-chalcogen Bond Formation Reaction Under Microwave Irradiation. Current Microwave Chemistry, 2020, 7, 40-49.	0.8	6
11	Palladiumâ€Catalyzed Olefination of 4Hâ€Benzo[d][1,3]oxazinâ€4â€one Derivatives with Activated Alkenes via Preferential Cyclic Imineâ€Nâ€Directed Aryl Câ€H Activation. European Journal of Organic Chemistry, 2019, 2019, 5777-5786.	2.4	6
12	Recent Advances on Diverse Decarboxylative Reactions of Amino Acids. Advanced Synthesis and Catalysis, 2019, 361, 2161-2214.	4.3	67
13	Synthesis and Reactivity of Selenophene and Their Benzo- and Other Carbocyclic-Fused Derivatives. , 2019, , .		1
14	Cobalt opper Catalyzed C(sp2) – N Cross Coupling of Amides or Nitrogenated Heterocycles with Styrenyl or Aryl Halides. ChemistrySelect, 2018, 3, 4406-4412.	1.5	7
15	Cobalt-Catalyzed Remote C-4 Functionalization of 8-Aminoquinoline Amides with Ethers via C–H Activation under Visible-Light Irradiation. Access to α-Heteroarylated Ether Derivatives. Organic Letters, 2018, 20, 1011-1014.	4.6	40
16	Copper catalyzed cyanation through Cî \in C bond cleavage of gem-aryl dibromide followed by second cyanation of iodoarene by a released CN unit. Organic Chemistry Frontiers, 2018, 5, 1586-1599.	4.5	10
17	Transition Metal- and Oxidant-Free Base-Mediated Selenation of Bicyclic Arenes at Room Temperature. ACS Omega, 2018, 3, 17540-17546.	3.5	18
18	Palladium-Catalyzed Ligand-Free Decarboxylative Coupling of α- Oxocarboxylic Acid with Aryl Diazonium Tetrafluoroborate: An Access to Unsymmetrical Diaryl Ketones. Journal of Organic Chemistry, 2018, 83, 12609-12618.	3.2	19

#	Article	IF	CITATIONS
19	Cu(OAc) ₂ -Promoted Ortho C(sp ²)–H Amidation of 8-Aminoquinoline Benzamide with Acyl Azide: Selective Formation of Aroyl or Acetyl Amide Based on Catalyst Loading. Journal of Organic Chemistry, 2018, 83, 11758-11767.	3.2	15
20	Copper‧ilver Dual Catalyzed Decyanative C–Se Cross oupling. Advanced Synthesis and Catalysis, 2017, 359, 329-338.	4.3	42
21	Transition-Metal-Free Iodine Catalyzed Selenocayanation of Styrenyl Bromides and an Easy Access to Benzoselenophenes via Intermediacy of Styrenyl Selenocyanate. Organic Letters, 2017, 19, 5748-5751.	4.6	44
22	Iodineâ€Catalyzed Synthesis of Chalcogenophenes by the Reaction of 1,3â€Dienyl Bromides and Potassium Selenocyanate/Potassium Sulfide (KSeCN/K ₂ S). Advanced Synthesis and Catalysis, 2017, 359, 4369-4378.	4.3	19
23	Iron(0) nanoparticles mediated direct conversion of aryl/heteroaryl amines to chalcogenides via in situ diazotization. Tetrahedron Letters, 2017, 58, 3441-3445.	1.4	19
24	Highly chemoselective reduction of azides to amines by Fe(0) nanoparticles in water at room temperature. Tetrahedron Letters, 2017, 58, 3457-3460.	1.4	6
25	Calcium mediated C–F bond substitution in fluoroarenes towards C–chalcogen bond formation. Organic Chemistry Frontiers, 2017, 4, 69-76.	4.5	11
26	Silver-catalyzed carbon–selenium cross-coupling using <i>N </i> -(phenylseleno)phthalimide: an alternate approach to the synthesis of organoselenides. Canadian Journal of Chemistry, 2017, 95, 51-56.	1.1	6
27	Visible Light Photocatalyzed Carbon-Heteroatom Bond Formation and Synthesis of Related Compounds. Current Green Chemistry, 2017, 3, 279-317.	1.1	7
28	Cobalt catalysed, copper assisted C(sp2)–P cross coupling. New Journal of Chemistry, 2016, 40, 9556-9564.	2.8	19
29	Palladium-Catalyzed Norbornene-Mediated Tandem <i>ortho</i> -C–H-Amination/ <i>ipso</i> -C–I-Cyanation of Iodoarenes: Regiospecific Synthesis of 2-Aminobenzonitrile. Organic Letters, 2016, 18, 4162-4165.	4.6	48
30	One-pot Suzuki coupling of aromatic amines via visible light photocatalyzed metal free borylation using t-BuONO at room temperature. Tetrahedron Letters, 2016, 57, 1551-1554.	1.4	34
31	Microwave Assisted Synthesis of Chalcogenides. Current Microwave Chemistry, 2016, 4, 25-35.	0.8	4
32	First Application of Heterogeneous Cobalt Catalysis in C _{sp2} –N Crossâ€Coupling of Activated Chloroarenes under Ligandâ€Free Conditions. European Journal of Organic Chemistry, 2015, 2015, 4018-4023.	2.4	10
33	Nickel–Copperâ€Catalyzed C(<i>sp</i> ²)N Crossâ€Coupling of Cyclic and Bridged Amides: An Access to Cyclic Enamides and Alkenyl Vince Lactams. Advanced Synthesis and Catalysis, 2015, 357, 3617-3626.	4.3	16
34	Palladiumâ€Catalyzed Oxidative CC Bond Cleavage of αâ€Hydroxyketones: Application to CH Acylation of Azoarenes and Synthesis of a Liver(X) Receptor Agonist. Asian Journal of Organic Chemistry, 2015, 4, 154-163.	2.7	8
35	Visibleâ€Lightâ€Photocatalyzed Metalâ€Free C–H Heteroarylation of Heteroarenes at Room Temperature: A Sustainable Synthesis of Biheteroaryls. European Journal of Organic Chemistry, 2015, 2015, 1727-1734.	2.4	60
36	Ascorbic Acid Promoted Oxidative Arylation of Vinyl Arenes to 2-Aryl Acetophenones without Irradiation at Room Temperature under Aerobic Conditions. Journal of Organic Chemistry, 2015, 80, 7739-7745.	3.2	28

#	Article	IF	CITATIONS
37	Cobaltâ€Catalyzed Intermolecular C(sp ²)O Crossâ€Coupling. Chemistry - A European Journal, 2015, 21, 8727-8732.	3.3	23
38	Palladium supported on silica gel confined ionic liquid as a reusable catalyst for carbon–carbon cross coupling reaction in water. Clean Technologies and Environmental Policy, 2014, 16, 1767-1771.	4.1	14
39	Visible Light Photocatalyzed Direct Conversion of Aryl-/Heteroarylamines to Selenides at Room Temperature. Organic Letters, 2014, 16, 1814-1817.	4.6	93
40	A co-operative Ni–Cu system for C _{sp} –C _{sp} and C _{sp} –C _{sp2} cross-coupling providing a direct access to unsymmetrical 1,3-diynes and en-ynes. Chemical Communications, 2014, 50, 15784-15787.	4.1	32
41	<i>tertâ€</i> Butyl Nitrite Mediated Regiospecific Nitration of (<i>E</i>)â€Azoarenes through Palladium atalyzed Directed CH Activation. Chemistry - A European Journal, 2014, 20, 9862-9866.	3.3	80
42	Cu-Catalyzed Fe-Driven C _{sp} –C _{sp} and C _{sp} –C _{sp2} Cross-Coupling: An Access to 1,3-Diynes and 1,3-Enynes. Journal of Organic Chemistry, 2014, 79, 7391-7398.	3.2	66
43	A Direct Synthesis of Selenophenes by Cu-Catalyzed One-Pot Addition of a Selenium Moiety to (E,E)-1,3-Dienyl Bromides and Subsequent Nucleophilic Cyclization. Organic Letters, 2014, 16, 4122-4125.	4.6	54
44	Copper-Assisted Nickel Catalyzed Ligand-Free C(sp ²)–O Cross-Coupling of Vinyl Halides and Phenols. Organic Letters, 2014, 16, 1040-1043.	4.6	55
45	ZnO-Supported Pd Nanoparticle-Catalyzed Ligand- and Additive-Free Cyanation of Unactivated Aryl Halides Using K ₄ [Fe(CN) ₆]. Journal of Organic Chemistry, 2014, 79, 5875-5879.	3.2	49
46	A general and green procedure for the synthesis of organochalcogenides by CuFe ₂ O ₄ nanoparticle catalysed coupling of organoboronic acids and dichalcogenides in PEG-400. RSC Advances, 2013, 3, 117-125.	3.6	64
47	Magnetically Separable CuFe ₂ O ₄ Nanoparticles Catalyzed Ligandâ€Free CS Coupling in Water: Access to (<i>E</i>)â€and (<i>Z</i>)â€Styrenylâ€, Heteroaryl and Sterically Hindered Aryl Sulfides. Advanced Synthesis and Catalysis, 2013, 355, 2285-2296.	4.3	63
48	Aerobic oxidation of thiols to disulfides under ball-milling in the absence of any catalyst, solvent, or base. RSC Advances, 2013, 3, 10680.	3.6	30
49	Solvent-Controlled Halo-Selective Selenylation of Aryl Halides Catalyzed by Cu(II) Supported on Al ₂ O ₃ . A General Protocol for the Synthesis of Unsymmetrical Organo Mono- and Bis-Selenides. Journal of Organic Chemistry, 2013, 78, 7145-7153.	3.2	80
50	Heterogeneous Cu ^{II} â€Catalysed Solventâ€Controlled Selective Nâ€Arylation of Cyclic Amides and Amines with Bromoâ€iodoarenes. Chemistry - A European Journal, 2013, 19, 15759-15768.	3.3	41
51	Reaction under Ball-Milling: Solvent-, Ligand-, and Metal-Free Synthesis of Unsymmetrical Diaryl Chalcogenides. Journal of Organic Chemistry, 2013, 78, 11110-11114.	3.2	84
52	Solvent-free one-pot synthesis of 1,2,3-triazole derivatives by the â€~Click' reaction of alkyl halides or aryl boronic acids, sodium azide and terminal alkynes over a Cu/Al ₂ O ₃ surface under ball-milling. Green Chemistry, 2013, 15, 389-397.	9.0	167
53	Palladium and copper catalyzed one-pot Sonogashira reaction of 2-nitroiodobenzenes with aryl acetylenes and subsequent regioselective hydration in water: synthesis of 2-(2-nitrophenyl)-1-aryl ethanones. Tetrahedron Letters, 2013, 54, 3697-3701.	1.4	11
54	Iron Nanoparticles-Catalyzed Electrophilic Amination of Functionalized Organocopper and Organozinc Reagents. Current Organic Chemistry, 2012, 16, 1453-1460.	1.6	7

#	Article	IF	CITATIONS
55	Ruthenium catalysed one-pot synthesis of S-allyl and cinnamyl dithiocarbamates using allyl and cinnamyl acetates in water. RSC Advances, 2012, 2, 6329.	3.6	14
56	Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: a general procedure for the synthesis of unsymmetrical diaryl chalcogenides. Green Chemistry, 2012, 14, 2024.	9.0	86
57	Highly selective reduction of nitroarenes by iron(0) nanoparticles in water. Chemical Communications, 2012, 48, 7982.	4.1	139
58	An efficient and general procedure for the synthesis of alkynyl chalcogenides (selenides and) Tj ETQq0 0 0 rgBT / dichalcogenides. Tetrahedron, 2012, 68, 10542-10549.	Overlock 1.9	10 Tf 50 627 22
59	Copper(I) Hydroxyapatite Catalyzed Sonogashira Reaction of Alkynes with Styrenyl Bromides. Reaction of <i>cis</i> -Styrenyl Bromides Forming Unsymmetric Diynes. Journal of Organic Chemistry, 2012, 77, 9379-9383.	3.2	49
60	Hydroxyapatite-supported Cu(<scp>i</scp>)-catalysed cyanation of styrenyl bromides with K ₄ [Fe(CN) ₆]: an easy access to cinnamonitriles. Organic and Biomolecular Chemistry, 2012, 10, 952-957.	2.8	46
61	Palladium-catalyzed site-selective arylation of symmetric dichlorobenzaldehyde to non-symmetric diaryl benzaldehyde via Suzuki coupling. Tetrahedron Letters, 2012, 53, 1558-1560.	1.4	3
62	Ionic liquid/PPh3 promoted cleavage of diphenyl disulfide and diselenide: a straight-forward metal-free one-pot route to the synthesis of unsymmetrical sulfides and selenides. Tetrahedron Letters, 2012, 53, 2149-2152.	1.4	27
63	Copper Nanoparticleâ€Catalyzed CarbonCarbon and CarbonHeteroatom Bond Formation with a Greener Perspective. ChemSusChem, 2012, 5, 22-44.	6.8	175
64	An easy access to styrenes: trans aryl 1,3-, 1,4- and 1,5-dienes, and 1,3,5-trienes by Hiyama cross-coupling catalyzed by palladium nanoparticles. New Journal of Chemistry, 2011, 35, 1103.	2.8	26
65	Ruthenium(iii)-catalysed phenylselenylation of allyl acetates by diphenyl diselenide and indium(i) bromide in neat: isolation and identification of intermediate. Organic and Biomolecular Chemistry, 2011, 9, 1763.	2.8	19
66	Amphiphilic allylation of activated alkenes by allyl acetates and allylstannanes catalyzed by palladium nanoparticles: an easy access to stereodefined substituted cyclohexene derivatives. New Journal of Chemistry, 2011, 35, 430-437.	2.8	7
67	Hydrogenation of Azides over Copper Nanoparticle Surface Using Ammonium Formate in Water. Journal of Organic Chemistry, 2011, 76, 7235-7239.	3.2	68
68	Transition metal-free procedure for the synthesis of S-aryl dithiocarbamates using aryl diazonium fluoroborate in water at room temperature. Green Chemistry, 2011, 13, 1837.	9.0	75
69	A convenient and efficient protocol for the synthesis of 4(1H)-cinnolones, 1,4-dihydrocinnolines, and cinnolines in aqueous medium: application for detection of nitrite ions. Tetrahedron, 2011, 67, 8918-8924.	1.9	21
70	Facile cyclization of 2-arylethynyl aniline to 4(1H)-cinnolones: a new chemodosimeter for nitrite ions. Tetrahedron Letters, 2011, 52, 461-464.	1.4	20
71	Green Oxidation of Methylarenes to Benzoic Acids with Bromide/Bromate in Water. Synthetic Communications, 2010, 40, 2922-2929.	2.1	10
72	A Simple and Efficient Oneâ€Pot Synthesis of Substituted Benzo[<i>b</i>]furans by Sonogashira Coupling–5â€ <i>endoâ€dig</i> Cyclization Catalyzed by Palladium Nanoparticles in Water Under Ligand― and Copperâ€Free Aerobic Conditions. European Journal of Organic Chemistry, 2010, 2010, 6067-6071.	2.4	57

#	Article	IF	CITATIONS
73	Palladium(0) nanoparticle-catalyzed sp2 C–H activation: a convenient route to alkyl–aryl ketones by direct acylation of aryl bromides and iodides with aldehydes. Tetrahedron Letters, 2010, 51, 3811-3814.	1.4	42
74	Palladium(0) nanoparticles-catalyzed ligand-free direct arylation of benzothiazole via C–H bond functionalization. Tetrahedron Letters, 2010, 51, 5624-5627.	1.4	38
75	Al ₂ O ₃ -Supported Cu-Catalyzed Electrophilic Substitution by PhSeBr in Organoboranes, Organosilanes, and Organostannanes. A Protocol for the Synthesis of Unsymmetrical Diaryl and Alkyl Aryl Selenides. Journal of Organic Chemistry, 2010, 75, 4864-4867.	3.2	52
76	Easy Access to α-Bromoketones and Epoxides fromvic-Dibromides Under Aqueous Conditions. Synthetic Communications, 2010, 40, 3233-3239.	2.1	5
77	Using more environmentally friendly solvents and benign catalysts in performing conventional organic reactions. Current Opinion in Drug Discovery & Development, 2010, 13, 658-68.	1.9	2
78	An indium–TMSCl promoted reaction of diphenyl diselenide and diorganyl disulfides with aldehydes: novel routes to selenoacetals, thioacetals and alkyl phenyl selenides. Tetrahedron, 2009, 65, 2072-2078.	1.9	20
79	Aerobic ligand-free Suzuki coupling catalyzed by in situ-generated palladium nanoparticles in water. Tetrahedron Letters, 2009, 50, 1003-1006.	1.4	100
80	Shape-dependent catalytic activity of copper oxide-supported Pd(0) nanoparticles for Suzuki and cyanation reactions. Tetrahedron Letters, 2009, 50, 3164-3167.	1.4	79
81	Water-promoted highly regio- and stereoselective synthesis of α-dehydro-β-amino esters and nitriles from Baylis–Hillman acetates. Tetrahedron Letters, 2009, 50, 4892-4895.	1.4	12
82	Ionic liquid-promoted dehydration of aldoximes: a convenient access to aromatic, heteroaromatic and aliphatic nitriles. Tetrahedron Letters, 2009, 50, 6088-6091.	1.4	39
83	Metal nanoparticles as efficient catalysts for organic reactions. Pure and Applied Chemistry, 2009, 81, 2337-2354.	1.9	38
84	Remarkable influence of substituent in ionic liquid in control of reaction: simple, efficient and hazardous organic solvent free procedure for the synthesis of 2-aryl benzimidazoles promoted by ionic liquid, [pmim]BF4. Green Chemistry, 2009, 11, 733.	9.0	101
85	Water-promoted regioselective hydrothiolation of alkynes. Canadian Journal of Chemistry, 2009, 87, 1605-1609.	1.1	32
86	Palladium Nanoparticle-Catalyzed Câ^'N Bond Formation. A Highly Regio- and Stereoselective Allylic Amination by Allyl Acetates. Journal of Organic Chemistry, 2009, 74, 3982-3985.	3.2	77
87	Copper nano-catalyst: sustainable phenyl-selenylation of aryl iodides and vinyl bromides in water under ligand free conditions. Organic and Biomolecular Chemistry, 2009, 7, 1652.	2.8	82
88	Indium(III) chloride-catalyzed oxidative cleavage of carbon–carbon multiple bonds by tert-butyl hydroperoxide in water—a safer alternative to ozonolysis. Tetrahedron Letters, 2008, 49, 2588-2591.	1.4	44
89	A one-pot efficient and fast Hiyama coupling using palladium nanoparticles in water under fluoride-free conditions. Tetrahedron Letters, 2008, 49, 3430-3432.	1.4	67
90	Catalysis by Ionic Liquids: Significant Rate Acceleration with the Use of [pmlm]Br in the Three omponent Synthesis of DithioÂcarbamates. European Journal of Organic Chemistry, 2008, 2008, 519-523.	2.4	54

#	Article	IF	CITATIONS
91	lonic liquid promoted interrupted Feist–Benary reaction with high diastereoselectivity. Tetrahedron Letters, 2008, 49, 4613-4617.	1.4	47
92	An alternative method for the regio- and stereoselective bromination of alkenes, alkynes, toluene derivatives and ketones using a bromide/bromate couple. Green Chemistry, 2008, 10, 232-237.	9.0	96
93	Highly Chemoselective Reduction of Aromatic Nitro Compounds by Copper Nanoparticles/Ammonium Formate. Journal of Organic Chemistry, 2008, 73, 6867-6870.	3.2	200
94	One-pot copper nanoparticle-catalyzed synthesis of S-aryl- and S-vinyl dithiocarbamates in water: high diastereoselectivity achieved for vinyl dithiocarbamates. Green Chemistry, 2008, 10, 1224.	9.0	98
95	Palladium(0) Nanoparticle Catalyzed Cross-Coupling of Allyl Acetates and Aryl and Vinyl Siloxanes. Journal of Organic Chemistry, 2008, 73, 9461-9464.	3.2	55
96	Hydroxyapatite-Supported Palladium-Catalyzed Efficient Synthesis of (E)-2-Alkene-4-ynecarboxylic Esters. Intense Fluorescene Emission of Selected Compounds. Journal of Organic Chemistry, 2008, 73, 5609-5612.	3.2	38
97	Ionic Liquid–Promoted Stereoselective Synthesis of (Z)â€Vinyl Bromides by [bmIm]OH under Organic Solvent–Free Conditions: A Green Approach. Synthetic Communications, 2007, 37, 2869-2876.	2.1	9
98	An Improved Procedure for the Three-Component Synthesis of Highly Substituted Pyridines Using Ionic Liquid. Journal of Organic Chemistry, 2007, 72, 3152-3154.	3.2	173
99	Water-Promoted Highly Selective Anti-Markovnikov Addition of Thiols to Unactivated Alkenes. Synlett, 2007, 2007, 0925-0928.	1.8	55
100	Efficient regio- and stereo-selective cleavage of aziridines and epoxides using an ionic liquid as reagent and reaction medium. Canadian Journal of Chemistry, 2007, 85, 366-371.	1.1	30
101	Efficient Synthesis of βâ€Alkyl/Arylsulfanyl Carbonyl Compounds by Inâ€TMSClâ€Promoted Cleavage of Dialkyl/Diaryl Disulfides and Subsequent Michael Addition. Synthetic Communications, 2007, 37, 1517-1523.	2.1	12
102	A New Route to the Synthesis of (E)- and (Z)-2-Alkene-4-ynoates and Nitriles fromvic-Diiodo-(E)-alkenes Catalyzed by Pd(0) Nanoparticles in Water. Organic Letters, 2007, 9, 2409-2412.	4.6	54
103	Solvent-Controlled Highly Selective Bis- and Monoallylation of Active Methylene Compounds by Allyl Acetate with Palladium(0) Nanoparticle. Organic Letters, 2007, 9, 4595-4598.	4.6	76
104	Ionic Liquid Promoted Regio- and Stereo-Selective Thiolysis of Epoxides—A Simple and Green Approach to β-Hydroxy- and β-Keto Sulfides. Australian Journal of Chemistry, 2007, 60, 278.	0.9	17
105	Ionic liquid promoted selective debromination of α-bromoketones under microwave irradiation. Tetrahedron, 2007, 63, 155-159.	1.9	21
106	Ionic liquid as catalyst and solvent: the remarkable effect of a basic ionic liquid, [bmlm]OH on Michael addition and alkylation of active methylene compounds. Tetrahedron, 2007, 63, 776-782.	1.9	119
107	Significant rate acceleration of the aza-Michael reaction in water. Tetrahedron Letters, 2007, 48, 141-143.	1.4	140
108	Chemo-, regio- and stereoselective addition of triorganoindium reagents to acetates of Baylis–Hillman adducts: a new strategy for the synthesis of (E)- and (Z)-trisubstituted alkenes. Tetrahedron Letters, 2007, 48, 3847-3850.	1.4	27

#	Article	IF	CITATIONS
109	Regioselective cross-coupling of allylindium reagents with activated benzylic bromides—a simple and efficient procedure for the synthesis of terminal alkenes. Tetrahedron Letters, 2007, 48, 7374-7379.	1.4	11
110	Indium(I) iodide promoted cleavage of dialkyl disulfides — Application of the Michael addition of thiolate anions to conjugated carbonyl compounds and regioselective ring opening of epoxides. Canadian Journal of Chemistry, 2006, 84, 762-770.	1.1	26
111	Eco-friendly and versatile brominating reagent prepared from a liquid bromine precursor. Green Chemistry, 2006, 8, 916.	9.0	105
112	Indium(I) Iodide Promoted Cleavage of Diphenyl Diselenide and Disulfide and Subsequent Palladium(0)-Catalyzed Condensation with Vinylic Bromides. A Simple One-Pot Synthesis of Vinylic Selenides and Sulfides. Journal of Organic Chemistry, 2006, 71, 423-425.	3.2	78
113	Catalysis by ionic liquids: cyclopropyl carbinyl rearrangements catalyzed by [pmim]Br under organic solvent free conditions. Tetrahedron Letters, 2006, 47, 881-884.	1.4	34
114	Indium(I) iodide as a radical initiator: intramolecular cyclization of functionalized bromo-alkynes to substituted tetrahydrofurans. Tetrahedron Letters, 2006, 47, 2859-2861.	1.4	33
115	An indium–TMSCl promoted reaction of diphenyl diselenides and aldehydes: novel routes to selenoacetals and alkyl phenyl selenides. Tetrahedron Letters, 2006, 47, 5677-5680.	1.4	17
116	Indium(I) iodide promoted cleavage of dialkyl/diaryl disulfides and subsequent anti-Markovnikov addition to styrenes: a new route to linear thioethers. Tetrahedron Letters, 2006, 47, 6911-6914.	1.4	30
117	Zinc tetrafluoroborate-catalysed synthesis of highly substituted pyrroles by a solvent-free reaction. Mendeleev Communications, 2006, 16, 220-221.	1.6	15
118	Indium Triflate Catalyzed Rearrangement of Aryl-Substituted Cyclopropyl Carbinols to 1,4-Disubstituted 1,3-Butadienes. European Journal of Organic Chemistry, 2006, 2006, 3012-3015.	2.4	23
119	Ionic Liquid as Catalyst and Reaction Medium – A Simple, Efficient and Green Procedure for Knoevenagel Condensation of Aliphatic and Aromatic Carbonyl Compounds Using a Task-Specific Basic Ionic Liquid. European Journal of Organic Chemistry, 2006, 2006, 3767-3770.	2.4	197
120	Direct Halogenation of Alcohols and Their Derivatives withtert-Butyl Halides in the Ionic Liquid [pmIm]Br under Sonication Conditions - A Novel, Efficient and Green Methodology. European Journal of Organic Chemistry, 2005, 2005, 755-758.	2.4	25
121	Direct Halogenation of Alcohols and Their Derivatives with tert-Butyl Halides in the Ionic Liquid [pmlm]Br under Sonication Conditions — A Novel, Efficient and Green Methodology ChemInform, 2005, 36, no.	0.0	Ο
122	Ionic Liquid as Catalyst and Reaction Medium. The Dramatic Influence of a Task-Specific Ionic Liquid, [bmIm]OH, in Michael Addition of Active Methylene Compounds to Conjugated Ketones, Carboxylic Esters, and Nitriles ChemInform, 2005, 36, no.	0.0	1
123	Ionic Liquid as Reagent. A Green Procedure for the Regioselective Conversion of Epoxides to Vicinal-Halohydrins Using [AcMIm]X under Catalyst- and Solvent-Free Conditions ChemInform, 2005, 36, no.	0.0	0
124	Catalysis by Ionic Liquid. A Green Protocol for the Stereoselective Debromination ofvicinal-Dibromides by [pmIm]BF4under Microwave Irradiation. Journal of Organic Chemistry, 2005, 70, 8621-8624.	3.2	109
125	Ionic Liquid as Catalyst and Reaction Medium. The Dramatic Influence of a Task-Specific Ionic Liquid, [bmlm]OH, in Michael Addition of Active Methylene Compounds to Conjugated Ketones, Carboxylic Esters, and Nitriles. Organic Letters, 2005, 7, 3049-3052.	4.6	461
126	lonic Liquid as Reagent. A Green Procedure for the Regioselective Conversion of Epoxides toVicinal-Halohydrins Using [AcMIm]X under Catalyst- and Solvent-Free Conditions. Journal of Organic Chemistry, 2005, 70, 4517-4519.	3.2	114

#	Article	IF	CITATIONS
127	Indium(I) Iodide-Promoted Cleavage of Dialkyl Disulfides and Subsequent Michael Addition of Thiolate Anions to Conjugated Carbonyl Compounds. Synlett, 2004, 2004, 1239-1242.	1.8	35
128	Molten Salt as a Green Reaction Medium: Efficient and Chemoselective Dithioacetalization and Oxathioacetalization of Aldehydes Mediated by Molten Tetrabutylammonium Bromide. Australian Journal of Chemistry, 2004, 57, 605.	0.9	22
129	Remarkably Selective Reduction of the α,β-Carbon—Carbon Double Bond in Highly Activated α,β,γ,Î-Unsaturated Alkenes by the InCl3—NaBH4 Reagent System ChemInform, 2004, 35, no.	0.0	Ο
130	Indium(I) Iodide-Promoted Cleavage of Diaryl Diselenides and Disulfides and Subsequent Condensation with Alkyl or Acyl Halides. One-Pot Efficient Synthesis of Diorganyl Selenides, Sulfides, Selenoesters, and Thioesters ChemInform, 2004, 35, no.	0.0	0
131	Indium(I) iodide promoted highly selective 1,2-addition of allyl and benzyl groups to α,β-unsaturated nitriles under sonication: a new synthesis of conjugated imines. Tetrahedron Letters, 2004, 45, 6875-6877.	1.4	28
132	Selective reductive cleavage of 2,3-epoxybromides by the InCl3–NaBH4 reagent system. Tetrahedron Letters, 2004, 45, 8579-8581.	1.4	26
133	Catalysis by ionic liquid: a simple, green and efficient procedure for the Michael addition of thiols and thiophosphate to conjugated alkenes in ionic liquid, [pmlm]Br. Tetrahedron, 2004, 60, 4183-4188.	1.9	120
134	Indium(I) Iodide-Promoted Cleavage of Diaryl Diselenides and Disulfides and Subsequent Condensation with Alkyl or Acyl Halides. One-Pot Efficient Synthesis of Diorganyl Selenides, Sulfides, Selenoesters, and Thioesters. Journal of Organic Chemistry, 2004, 69, 5793-5795.	3.2	158
135	An Efficient and Green Synthesis of 2-Arylbenzothiazoles in an Ionic Liquid, [pmlm]Br under Microwave Irradiation. Chemistry Letters, 2004, 33, 274-275.	1.3	91
136	Reduction of activated conjugated alkenes by the InCl3–NaBH4 reagent system. Tetrahedron, 2003, 59, 7901-7906.	1.9	64
137	An Efficient Synthesis of Pyrroles by a One-Pot, Three-Component Condensation of a Carbonyl Compounds, an Amine and a Nitroalkene in a Molten Ammonium Salt ChemInform, 2003, 34, no.	0.0	0
138	Indium(I) Iodide Mediated Cleavage of Diphenyl Diselenide. An Efficient One-Pot Procedure for the Synthesis of Unsymmetrical Diorganyl Selenides ChemInform, 2003, 34, no.	0.0	0
139	An efficient synthesis of pyrroles by a one-pot, three-component condensation of a carbonyl compound, an amine and a nitroalkene in a molten ammonium salt. Tetrahedron Letters, 2003, 44, 2865-2868.	1.4	65
140	Efficient microwave-assisted synthesis of quinolines and dihydroquinolines under solvent-free conditions. Tetrahedron, 2003, 59, 813-819.	1.9	110
141	Catalysis by an ionic liquid: efficient conjugate addition of thiols to electron deficient alkenes catalyzed by molten tetrabutylammonium bromide under solvent-free conditions. Tetrahedron, 2003, 59, 2417-2421.	1.9	145
142	Remarkably Selective Reduction of the α,β-Carbonâ^'Carbon Double Bond in Highly Activated α,β,γ,Î′-Unsaturated Alkenes by the InCl3â^'NaBH4Reagent System. Journal of Organic Chemistry, 2003, 68, 7130-7132.	3.2	64
143	Highly efficient acylation of alcohols, amines and thiols under solvent-free and catalyst-free conditions. Green Chemistry, 2003, 5, 44-46.	9.0	47
144	Indium(I) Iodide-Mediated Cleavage of Diphenyl Diselenide. An Efficient One-Pot Procedure for the Synthesis of Unsymmetrical Diorganyl Selenides. Organic Letters, 2003, 5, 1439-1441.	4.6	92

#	Article	IF	CITATIONS
145	A Simple and Convenient Procedure for the Conversion of Esters to Secondary Amides. Synthetic Communications, 2003, 33, 297-301.	2.1	35
146	Dichloroindium Hydride(Cl2InH): A Convenient Reagent for Stereoselective Reductionofvic-Dibromides to (E)-Alkenes. Synthesis, 2003, 2003, 1012-1014.	2.3	26
147	Zinc Tetrafluoroborate-Catalyzed Efficient Conversion of Aldehydes to Geminal Diacetates and Cyanoacetates. Chemistry Letters, 2003, 32, 366-367.	1.3	44
148	Highly Efficient Transthioacetalization of O,O-Acetals Catalyzed by Indium(III) Chloride. Synlett, 2002, 2002, 0727-0730.	1.8	36
149	Unusual Cleavage of Ethers by Thiophenol on the Surface of Silica Gel Impregnated with Indium(III) Chloride under Microwave Irradiation: Efficient Procedure for the Synthesis of Thioethers through Transthioetherification. Synlett, 2002, 2002, 0987-0989.	1.8	33
150	A simple and green procedure for the synthesis of α-aminophosphonate by a one-pot three-component condensation of carbonyl compound, amine and diethyl phosphite without solvent and catalyst. Green Chemistry, 2002, 4, 551-554.	9.0	94
151	Catalysis by ionic liquids: solvent-free efficient transthioacetalisation of acetals by molten tetrabutylammonium bromideElectronic supplementary information (ESI) avialable: spectral data of S,S-acetals. See http://www.rsc.org/suppdata/p1/b2/b204363g/. Journal of the Chemical Society, Perkin Transactions 1. 2002. , 1520-1522.	1.3	54
152	A Practical and Green Approach towards Synthesis of Dihydropyrimidinones without Any Solvent or Catalyst. Organic Process Research and Development, 2002, 6, 817-818.	2.7	79
153	Indium trichloride catalyzed one-step synthesis of α-amino nitriles by a three-component condensation of carbonyl compounds, amines and potassium cyanide. Tetrahedron, 2002, 58, 2529-2532.	1.9	108
154	Reduction of trihalomethyl carbinols and their acetates, mesylates and tosylates by indium metal. Tetrahedron Letters, 2002, 43, 5993-5995.	1.4	25
155	Use of indium hydride (Cl2InH) for chemoselective reduction of the carbonî—,carbon double bond in conjugated alkenes. Tetrahedron Letters, 2002, 43, 7405-7407.	1.4	38
156	Zinc tetrafluoroborate catalyzed Mannich-type reaction of aldimines and silyl enol ethers in aqueous medium. Tetrahedron, 2002, 58, 983-988.	1.9	64
157	Indium triiodide catalysed one-step conversion of tetrahydropyranyl ethers to acetates with high selectivity. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 355-357.	1.3	17
158	Highly selective one-pot conversion of THP and MOM ethers to acetates by indium triiodide-catalysed deprotection and subsequent transesterification by ethyl acetate. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2262-2265.	1.3	13
159	Indium-Mediated Allylation of β-Keto Phosphonates. Journal of Organic Chemistry, 2001, 66, 7519-7521.	3.2	22
160	Stereoselective Reduction of Aryl-Substitutedgem-Dibromides to Vinyl Bromides by Indium Metal. Journal of Organic Chemistry, 2001, 66, 4102-4103.	3.2	52
161	Selective Reduction of Terminal Alkynes to Alkenes by Indium Metal. Journal of Organic Chemistry, 2001, 66, 5624-5626.	3.2	23
162	Indium Metal as a Reducing Agent. Selective Reduction of the Carbonâ^'Carbon Double Bond in Highly Activated Conjugated Alkenes. Organic Letters, 2001, 3, 2603-2605.	4.6	39

10

BRINDABAN C RANU

#	Article	IF	CITATIONS
163	Synthesis of alkyl-substituted pyrroles by three-component coupling of carbonyl compound, amine and nitro-alkane/alkene on a solid surface of silica gel/alumina under microwave irradiation. Tetrahedron, 2001, 57, 4767-4773.	1.9	63
164	Microwave-assisted simple synthesis of quinolines from anilines and alkyl vinyl ketones on the surface of silica gel in the presence of indium(III) chloride. Tetrahedron Letters, 2000, 41, 531-533.	1.4	134
165	An Efficient and General Method for Ester Hydrolysis on the Surface of Silica Gel Catalyzed by Indium Triiodide Under Microwave Irradiation. Synthetic Communications, 2000, 30, 4167-4171.	2.1	15
166	Indium(III) Chloride-Catalyzed One-Pot Synthesis of Dihydropyrimidinones by a Three-Component Coupling of 1,3-Dicarbonyl Compounds, Aldehydes, and Urea: An Improved Procedure for the Biginelli Reaction. Journal of Organic Chemistry, 2000, 65, 6270-6272.	3.2	451
167	Construction of bicyclo[2.2.2]octanone systems by microwave-assisted solid phase Michael addition followed by Al2O3-mediated intramolecular aldolisation. An eco-friendly approach. Green Chemistry, 2000, 2, 5-6.	9.0	15
168	Highly selective acylation of alcohols and amines by an indium triiodide-catalysed transesterification process. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 2223-2225.	1.3	34
169	A simple and efficient method for selective deprotection of t-butyldimethylsilyl ethers by zinc tetrafluoroborate in water. Tetrahedron Letters, 1999, 40, 1985-1988.	1.4	53
170	Indium as a reducing agent. Chemoselective reduction of α-halocarbonyl compounds and benzyl halides by indium metal in water under sonication. Journal of the Chemical Society Perkin Transactions 1, 1999, , 1139-1140.	0.9	44
171	General Procedure for the Synthesis of $\hat{1}\pm$ -Amino Phosphonates from Aldehydes and Ketones Using Indium(III) Chloride as a Catalyst. Organic Letters, 1999, 1, 1141-1143.	4.6	283
172	Indium(III) Chloride-Promoted Rearrangement of Epoxides: A Selective Synthesis of Substituted Benzylic Aldehydes and Ketones. Journal of Organic Chemistry, 1998, 63, 8212-8216.	3.2	214
173	Regioselective Reduction of Quinolines and Related Systems to 1,2,3,4-Tetrahydro Derivatives with Zinc Borohydride. Synthetic Communications, 1998, 28, 485-492.	2.1	22
174	Stereoselective debromination of aryl-substituted vic-dibromide with indium metal. Chemical Communications, 1998, , 2113-2114.	4.1	55
175	A Simple and Efficient Procedure for Transesterification Catalyzed by Indium Triiodide. Journal of Organic Chemistry, 1998, 63, 6027-6028.	3.2	70
176	Surface-Mediated Solid Phase Reaction. IX. A Convenient Procedure for Aldol Reaction of Ketene Silyl Acetals with Aldehydes on the Solid Surface of Alumina. Synthetic Communications, 1997, 27, 3065-3077.	2.1	7
177	Microwave Assisted Michael Addition of Cycloalkenones and Substituted Enones on the Surface of Alumina in Dry Media. Synthetic Communications, 1997, 27, 621-626.	2.1	27
178	DEALKYLATION OF ETHERS. A REVIEW. Organic Preparations and Procedures International, 1996, 28, 371-409.	1.3	64
179	Reduction of Azides with Zinc Borohydride. Journal of Organic Chemistry, 1994, 59, 4114-4116.	3.2	68
180	Ion Exchange Resin-Mediated Hydrolytic Cleavage of α-Nitroepoxides. Simple One-Pot Synthesis of α-Hydroxyketones. Synthetic Communications, 1992, 22, 1523-1528.	2.1	9

BRINDABAN C RANU

#	Article	IF	CITATIONS
181	Synthesis of .betaketo 1,3-dithianes from acetylenic ketones. Journal of Organic Chemistry, 1992, 57, 7349-7352.	3.2	51
182	Surface-mediated solid phase reaction: Dramatic improvement of Michael reaction on the surface of alumina. Tetrahedron, 1992, 48, 1327-1332.	1.9	70
183	A Novel Chiral Auxiliary for Enantioselective Synthesis of Tertiary Alcohol. Synthetic Communications, 1991, 21, 1619-1624.	2.1	2
184	Surface-mediated solid phase michael reaction: dramatic acceleration on alumina. Tetrahedron Letters, 1991, 32, 2811-2812.	1.4	49
185	Ion Exchange Resin-Mediated Hydrolytic Cleavage of Epoxides. Simple One-Pot Synthesis of 2-Arylketones from 1-Aryl-1,2-epoxides. Synthetic Communications, 1990, 20, 1751-1756.	2.1	8
186	A mild and Selective Method of Ester Hydrolysis. Synthetic Communications, 1989, 19, 627-631.	2.1	16
187	A Simple Synthesis of γ-Hydroxy-α β-Unsaturated Aldehydes. Synthetic Communications, 1987, 17, 155-160.	2.1	7
188	Stereospecific Synthesis of <u>Endo</u> -6-Aryl-2-Oxobicyclo [3.3.1]Nonanes. Synthetic Communications, 1987, 17, 1539-1543.	2.1	5