Hamid Reza Maimani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1926155/publications.pdf

Version: 2024-02-01

623734 477307 49 910 14 29 citations g-index h-index papers 49 49 49 296 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stopping sets of codes from complete graph. Journal of Discrete Mathematical Sciences and Cryptography, 2022, 25, 395-404.	0.8	O
2	On the double Roman bondage numbers of graphs. Discrete Mathematics, Algorithms and Applications, 2022, 14, .	0.6	3
3	Unitary Cayley graphs whose Roman domination numbers are at most four. AKCE International Journal of Graphs and Combinatorics, 2022, 19, 36-40.	0.7	1
4	GHWs of codes derived from the incidence matrices of some graphs. Computational and Applied Mathematics, 2022, 41, .	2.2	0
5	Further results on the signed Italian domination. Journal of Applied Mathematics and Computing, 2021, 66, 823-834.	2.5	1
6	Cohen–Macaulayness of two classes of circulant graphs. Journal of Algebraic Combinatorics, 2021, 53, 805-827.	0.8	3
7	Independent Double Roman Domination in Graphs. Bulletin of the Iranian Mathematical Society, 2020, 46, 543-555.	1.0	12
8	Zero-sum flows for Steiner systems. Discrete Mathematics, 2020, 343, 112074.	0.7	0
9	On the Roman {2}-domatic number of graphs. Discrete Mathematics, Algorithms and Applications, 2020, , 2150052.	0.6	1
10	The watching system as a generalization of identifying code. Applied Mathematics and Computation, 2020, 380, 125302.	2.2	2
11	Independent double Roman domination in graphs. AKCE International Journal of Graphs and Combinatorics, 2020, 17, 905-910.	0.7	9
12	Nowhere-zero flow on some products of signed graphs. Discrete Applied Mathematics, 2019, 271, 84-92.	0.9	0
13	Classification of the Toroidal Jacobson Graphs. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41, 321-334.	0.9	1
14	Signed graphs cospectral with the path. Linear Algebra and Its Applications, 2018, 553, 104-116.	0.9	14
15	On the spectrum of some signed complete and complete bipartite graphs. Filomat, 2018, 32, 5817-5826.	0.5	5
16	A note on the Ramsey number of even wheels versus stars. Discussiones Mathematicae - Graph Theory, 2018, 38, 397.	0.3	0
17	Identifying codes and watching systems in Kneser graphs. Discrete Mathematics, Algorithms and Applications, 2017, 09, 1750007.	0.6	5
18	Coloring of a non-zero component graph associated with a finite dimensional vector space. Journal of Algebra and Its Applications, 2017, 16, 1750173.	0.4	7

#	ARTICLE Share stitlical Ramsey number of <mml:math <="" th="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
19	altimg="si12.gif" display="inline" overflow="scroll"> <mml:msub><mml:mrow><mml:mi>F</mml:mi></mml:mrow><mml:mrow><mml:mi>n<mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mn>4<td>nig.s/mml:r mn><td>mrgw>38w></td></td></mml:mn></mml:mrow></mml:msub></mml:mi></mml:mrow></mml:msub>	nig.s/mml:r mn> <td>mrgw>38w></td>	mrgw>38w>
20	Discrete Applied Mathematics, 2017, 217, 203-209. On double-star decomposition of graphs. Discussiones Mathematicae - Graph Theory, 2017, 37, 835.	0.3	0
21	Domination number of total graphs. Mathematica Slovaca, 2016, 66, 1527-1535.	0.6	1
22	The nonorientable genus of some Jacobson graphs and classification of the projective ones. Publicationes Mathematicae, 2016, 88, 425-437.	0.2	2
23	Construction of MDS matrices from minors of an MDS matrix. , 2015, , .		1
24	Classification of rings with unit graphs having domination number less than four. Rendiconti Del Seminario Matematico Dell 'Universita' Di Padova/Mathematical Journal of the University of Padova, 2015, 133, 173-195.	0.5	7
25	Domination number in the annihilating-ideal graphs of commutative rings. Publications De L'Institut Mathematique, 2015, 97, 225-231.	0.2	7
26	Some Results on the Domination Number of a Zero-divisor Graph. Canadian Mathematical Bulletin, 2014, 57, 573-578.	0.5	4
27	New concepts in design of lightweight MDS diffusion layers. , 2014, , .		1
28	Well-Covered and Cohen–Macaulay Unitary Cayley Graphs. Acta Mathematica Hungarica, 2014, 144, 92-98.	0.5	1
29	Dominating Sets of the Annihilating-Ideal Graphs. Electronic Notes in Discrete Mathematics, 2014, 45, 17-22.	0.4	4
30	Nonplanarity of unit graphs and classification of the toroidal ones. Pacific Journal of Mathematics, 2014, 268, 371-387.	0.5	14
31	AN IDEAL THEORETIC APPROACH TO COMPLETE PARTITE ZERO-DIVISOR GRAPHS OF POSETS. Journal of Algebra and Its Applications, 2013, 12, 1250148.	0.4	4
32	Statistical properties of modular multiplication modulo a power of two., 2012,,.		0
33	Rings whose total graphs have genus at most one. Rocky Mountain Journal of Mathematics, 2012, 42, .	0.4	51
34	On the diameter and girth of zero-divisor graphs of posets. Discrete Applied Mathematics, 2012, 160, 1319-1324.	0.9	15
35	Graphs Attached to Rings Revisited. Arabian Journal for Science and Engineering, 2011, 36, 997-1011.	1.1	40
36	Necessary and sufficient conditions for unit graphs to be Hamiltonian. Pacific Journal of Mathematics, 2011, 249, 419-429.	0.5	29

#	Article	IF	Citations
37	A class of weakly perfect graphs. Czechoslovak Mathematical Journal, 2010, 60, 1037-1041.	0.3	8
38	WEAKLY PERFECT GRAPHS ARISING FROM RINGS. Glasgow Mathematical Journal, 2010, 52, 417-425.	0.3	13
39	Unit Graphs Associated with Rings. Communications in Algebra, 2010, 38, 2851-2871.	0.6	102
40	Comaximal graph of commutative rings. Journal of Algebra, 2008, 319, 1801-1808.	0.7	95
41	On eigensharp and almost eigensharp graphs. Linear Algebra and Its Applications, 2008, 429, 2746-2753.	0.9	3
42	Zero-divisor graphs of amalgamated duplication of a ring along an ideal. Journal of Pure and Applied Algebra, 2008, 212, 168-174.	0.6	31
43	Zero-Divisor Graph with Respect to an Ideal. Communications in Algebra, 2006, 34, 923-929. 3-Designs from <mml:math <="" altimg="si111.gif" overflow="scroll" td=""><td>0.6</td><td>42</td></mml:math>	0.6	42
44	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Mat	0.7	29
45	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x The kernels of the incidence matrices of graphs revisited. Linear Algebra and Its Applications, 2006, 414, 617-625.	0.9	6
46	Non-commuting graph of a group. Journal of Algebra, 2006, 298, 468-492.	0.7	174
47	When a zero-divisor graph is planar or a complete r-partite graph. Journal of Algebra, 2003, 270, 169-180.	0.7	130
48	On trades: an update. Discrete Applied Mathematics, 1999, 95, 361-376.	0.9	12
49	GHWs of Codes Arising from Cartesian Product of Graphs. Bulletin of the Malaysian Mathematical Sciences Society, 0, , .	0.9	0