Yan Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1925520/publications.pdf

Version: 2024-02-01

477173 430754 1,224 43 18 29 citations h-index g-index papers 43 43 43 1134 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Parameter Optimization and Field Validation of the Functional–Structural Model GREENLAB for Maize. Annals of Botany, 2006, 97, 217-230.	1.4	177
2	Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding. European Journal of Agronomy, 2018, 95, 24-32.	1.9	122
3	Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV. Functional Plant Biology, 2017, 44, 169.	1.1	98
4	Comparison of architecture among different cultivars of hybrid rice using a spatial light model based on 3-D digitising. Functional Plant Biology, 2008, 35, 900.	1.1	73
5	Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations. Annals of Botany, 2018, 121, 1079-1088.	1.4	72
6	Parameter Optimization and Field Validation of the Functional-Structural Model GREENLAB for Maize at Different Population Densities. Annals of Botany, 2007, 101, 1185-1194.	1.4	51
7	Plant growth and architectural modelling and its applications. Annals of Botany, 2011, 107, 723-727.	1.4	51
8	An integrated method for quantifying root architecture of field-grown maize. Annals of Botany, 2014, 114, 841-851.	1.4	46
9	Pixel size of aerial imagery constrains the applications of unmanned aerial vehicle in crop breeding. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154, 1-9.	4.9	41
10	Parameter Stability of the Functional-Structural Plant Model GREENLAB as Affected by Variation within Populations, among Seasons and among Growth Stages. Annals of Botany, 2007, 99, 61-73.	1.4	40
11	Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping. Journal of Experimental Botany, 2021, 72, 3630-3646.	2.4	36
12	Evaluating a three dimensional model of diffuse photosynthetically active radiation in maize canopies. International Journal of Biometeorology, 2006, 50, 349-357.	1.3	35
13	A Comparative Study on the Uptake and Toxicity of Nickel Added in the Form of Different Salts to Maize Seedlings. International Journal of Environmental Research and Public Health, 2015, 12, 15075-15087.	1.2	32
14	Simulating the Distribution of R/FR in Maize Canopies with Monte Carlo Ray Tracing Approach. , 2009, , .		31
15	Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season. Annals of Botany, 2020, 126, 701-712.	1.4	31
16	A field-based high-throughput method for acquiring canopy architecture using unmanned aerial vehicle images. Agricultural and Forest Meteorology, 2021, 296, 108231.	1.9	31
17	New advances in virtual plant research. Science Bulletin, 2001, 46, 888-894.	1.7	28
18	A stochastic model of tree architecture and biomass partitioning: application to Mongolian Scots pines. Annals of Botany, 2011, 107, 781-792.	1.4	25

#	Article	IF	CITATIONS
19	Three-dimensional architecture of axile roots of field-grown maize. Plant and Soil, 2015, 387, 363-377.	1.8	23
20	Important photosynthetic contribution of silique wall to seed yield-related traits in Arabidopsis thaliana. Photosynthesis Research, 2018, 137, 493-501.	1.6	22
21	Optimizing soil-coring strategies to quantify root-length-density distribution in field-grown maize: virtual coring trials using 3-D root architecture models. Annals of Botany, 2018, 121, 809-819.	1.4	21
22	Estimating photosynthetically active radiation distribution in maize canopies by a three-dimensional incident radiation model. Functional Plant Biology, 2008, 35, 867.	1,1	15
23	Maize kernel growth at different floret positions of the ear. Field Crops Research, 2013, 149, 177-186.	2.3	15
24	Coupling individual kernel-filling processes with source–sink interactions into GREENLAB-Maize. Annals of Botany, 2018, 121, 961-973.	1.4	14
25	Coupling Process-Based Models and Plant Architectural Models: A Key Issue for Simulating Crop Production., 2009,, 130-147.		14
26	Assessment of the influence of global dimming on the photosynthetic production of rice based on three-dimensional modeling. Science China Earth Sciences, 2011, 54, 290-297.	2.3	13
27	A Functional and Structural Mongolian Scots Pine (Pinus sylvestris var. mongolica) Model Integrating Architecture, Biomass and Effects of Precipitation. PLoS ONE, 2012, 7, e43531.	1.1	13
28	Image-based root phenotyping for field-grown crops: An example under maize/soybean intercropping. Journal of Integrative Agriculture, 2022, 21, 1606-1619.	1.7	9
29	Comparison of Modelling Strategies to Estimate Phenotypic Values from an Unmanned Aerial Vehicle with Spectral and Temporal Vegetation Indexes. Remote Sensing, 2021, 13, 2827.	1.8	8
30	Towards Modeling and Analyzing Stem Lodging for Two Contrasting Rice Cultivars., 2009,,.		6
31	Plant Modeling and Its Applications to Agriculture. , 2006, , .		5
32	Simplification of leaf surfaces from scanned data: Effects of two algorithms on leaf morphology. Computers and Electronics in Agriculture, 2016, 121, 393-403.	3.7	5
33	Modelling threeâ€dimensional architecture of pine tree <i>(Pinus sylvestris</i> linn,) Tj ETQq1 1 0.784314 rgBT /C	verlock 10 0.9) Tf 50 187 4
34	Calibration of GREENLAB Model for Maize with Sparse Experimental Data. , 2006, , .		3
35	Study on the Effects of Defoliation on the Growth of Cotton Plant Using the Functional Structural Model GREENLAB. , 2006, , .		3
36	Assessment of the Effects of Leaf Angle Combinations on Potential Photosynthesis Capacity of Rice with 3-D Models Using High Performance Computing. , 2009, , .		3

#	Article	IF	CITATIONS
37	Modeling Branching Effects on Source-Sink Relationships of the Cotton Plant. , 2009, , .		2
38	Calibration of Topological Development in the Procedure of Parametric Identification: Application of the Stochastic GreenLab Model for Pinus sylvestris var. mongolica., 2009,,.		2
39	Improving the Calibration Process of GreenLab Model on the Cotton Plant. , 2009, , 209-218.		2
40	Quantification of light absorption and photosynthesis of tobacco canopy using 3-D modeling. , 2012, , .		1
41	Quantification of differences in root system architecture under maize/soybean interspecific interactions. , 2018, , .		1
42	Evaluating the contribution of complementary radiation on photosynthesis of maize canopy with 3D radiative transfer model. , 2012 , , .		0
43	Editorial of the Special Issue of the 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA'12). Ecological Modelling, 2014, 290, 1-2.	1.2	0