JoaquÃ-n AbellÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1925388/publications.pdf

Version: 2024-02-01

68 papers 2,026 citations

201385 27 h-index 243296 44 g-index

73 all docs

73 docs citations

times ranked

73

1324 citing authors

#	Article	IF	Citations
1	A new label ordering method in Classifier Chains based on imprecise probabilities. Neurocomputing, 2022, 487, 34-45.	3.5	O
2	A cost-sensitive Imprecise Credal Decision Tree based on Nonparametric Predictive Inference. Applied Soft Computing Journal, 2022, 123, 108916.	4.1	3
3	Using Credal C4.5 for Calibrated Label Ranking in Multi-Label Classification. International Journal of Approximate Reasoning, 2022, 147, 60-77.	1.9	6
4	Credal sets representable by reachable probability intervals and belief functions. International Journal of Approximate Reasoning, 2021, 129, 84-102.	1.9	2
5	Uncertainty-based information measures on the approximate non-parametric predictive inference model. International Journal of General Systems, 2021, 50, 159-181.	1.2	1
6	Required mathematical properties and behaviors of uncertainty measures on belief intervals. International Journal of Intelligent Systems, 2021, 36, .	3.3	6
7	Combination in the theory of evidence via a new measurement of the conflict between evidences. Expert Systems With Applications, 2021, 178, 114987.	4.4	15
8	Using extreme prior probabilities on the Naive Credal Classifier. Knowledge-Based Systems, 2021, 237, 107707.	4.0	0
9	Critique of Recent Uncertainty Measures Developed Under the Evidence Theory and Belief Intervals. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 1186-1192.	5. 9	21
10	Bagging of credal decision trees for imprecise classification. Expert Systems With Applications, 2020, 141, 112944.	4.4	30
11	Non-parametric predictive inference for solving multi-label classification. Applied Soft Computing Journal, 2020, 88, 106011.	4.1	6
12	Maximum of Entropy for Belief Intervals Under Evidence Theory. IEEE Access, 2020, 8, 118017-118029.	2.6	9
13	On the Use of m-Probability-Estimation and Imprecise Probabilities in the NaÃ-ve Bayes Classifier. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2020, 28, 661-682.	0.9	2
14	Critique of modified Deng entropies under the evidence theory. Chaos, Solitons and Fractals, 2020, 140, 110112.	2.5	21
15	Basic Properties for Total Uncertainty Measures in the Theory of Evidence. Information Fusion and Data Science, 2019, , 99-108.	0.3	2
16	Decision Tree Ensemble Method for Analyzing Traffic Accidents of Novice Drivers in Urban Areas. Entropy, 2019, 21, 360.	1.1	31
17	A comparison of random forest based algorithms: random credal random forest versus oblique random forest. Soft Computing, 2019, 23, 10739-10754.	2.1	56
18	Ensemble of classifier chains and Credal C4.5 for solving multi-label classification. Progress in Artificial Intelligence, 2019, 8, 195-213.	1.5	12

#	Article	IF	Citations
19	Combination in Dempster-Shafer Theory Based on a Disagreement Factor Between Evidences. Lecture Notes in Computer Science, 2019, , 148-159.	1.0	1
20	Increasing diversity in random forest learning algorithm via imprecise probabilities. Expert Systems With Applications, 2018, 97, 228-243.	4.4	38
21	Remarks on "A new non-specificity measure in evidence theory based on belief intervals― Chinese Journal of Aeronautics, 2018, 31, 529-533.	2.8	2
22	Drawbacks of Uncertainty Measures Based on the Pignistic Transformation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 382-388.	5.9	30
23	AdaptativeCC4.5: Credal C4.5 with a rough class noise estimator. Expert Systems With Applications, 2018, 92, 363-379.	4.4	14
24	Analyzing properties of Deng entropy in the theory of evidence. Chaos, Solitons and Fractals, 2017, 95, 195-199.	2.5	73
25	A comparative study on base classifiers in ensemble methods for credit scoring. Expert Systems With Applications, 2017, 73, 1-10.	4.4	171
26	Extraction of decision rules via imprecise probabilities. International Journal of General Systems, 2017, 46, 313-331.	1.2	5
27	A Random Forest approach using imprecise probabilities. Knowledge-Based Systems, 2017, 134, 72-84.	4.0	44
28	Improving the Naive Bayes Classifier via a Quick Variable Selection Method Using Maximum of Entropy. Entropy, 2017, 19, 247.	1.1	30
29	A New Robust Classifier on Noise Domains: Bagging of Credal C4.5 Trees. Complexity, 2017, 2017, 1-17.	0.9	8
30	Analysis of Credal-C4.5 for classification in noisy domains. Expert Systems With Applications, 2016, 61, 314-326.	4.4	32
31	Patterns of Single-Vehicle Crashes on Two-Lane Rural Highways in Granada Province, Spain. Transportation Research Record, 2014, 2432, 133-141.	1.0	29
32	Credal-C4.5: Decision tree based on imprecise probabilities to classify noisy data. Expert Systems With Applications, 2014, 41, 4625-4637.	4.4	92
33	Classification with decision trees from a nonparametric predictive inference perspective. Computational Statistics and Data Analysis, 2014, 71, 789-802.	0.7	25
34	Analysis and extension of decision trees based on imprecise probabilities: Application on noisy data. Expert Systems With Applications, 2014, 41, 2514-2525.	4.4	36
35	Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems With Applications, 2014, 41, 3825-3830.	4.4	126
36	Credal Decision Trees to Classify Noisy Data Sets. Lecture Notes in Computer Science, 2014, , 689-696.	1.0	4

#	Article	IF	CITATIONS
37	Using Imprecise Probabilities to Extract Decision Rules via Decision Trees for Analysis of Traffic Accidents. Lecture Notes in Computer Science, 2014, , 288-298.	1.0	1
38	Analysis of traffic accident severity using Decision Rules via Decision Trees. Expert Systems With Applications, 2013, 40, 6047-6054.	4.4	171
39	Ensembles of decision trees based on imprecise probabilities and uncertainty measures. Information Fusion, 2013, 14, 423-430.	11.7	28
40	An application of Non-Parametric Predictive Inference on multi-class classification high-level-noise problems. Expert Systems With Applications, 2013, 40, 4585-4592.	4.4	6
41	Extracting decision rules from police accident reports through decision trees. Accident Analysis and Prevention, 2013, 50, 1151-1160.	3.0	104
42	Equivalence relations among dominance concepts on probability intervals and general credal sets. International Journal of General Systems, 2012, 41, 109-122.	1.2	6
43	IMPRECISE CLASSIFICATION WITH CREDAL DECISION TREES. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2012, 20, 763-787.	0.9	20
44	Determining dependence relations using a new score based on imprecise probabilities. Intelligent Data Analysis, 2012, 16, 847-863.	0.4	1
45	Bagging schemes on the presence of class noise in classification. Expert Systems With Applications, 2012, 39, 6827-6837.	4.4	54
46	A memory efficient semi-Naive Bayes classifier with grouping of cases. Intelligent Data Analysis, 2011, 15, 299-318.	0.4	2
47	Maximising entropy on the nonparametric predictive inference model for multinomial data. European Journal of Operational Research, 2011, 212, 112-122.	3.5	22
48	Combining nonspecificity measures in Dempster–Shafer theory of evidence. International Journal of General Systems, 2011, 40, 611-622.	1.2	22
49	An ensemble method using credal decision trees. European Journal of Operational Research, 2010, 205, 218-226.	3 . 5	42
50	A FILTER-WRAPPER METHOD TO SELECT VARIABLES FOR THE NAIVE BAYES CLASSIFIER BASED ON CREDAL DECISION TREES. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2009, 17, 833-854.	0.9	14
51	An Experimental Study about Simple Decision Trees for Bagging Ensemble on Datasets with Classification Noise. Lecture Notes in Computer Science, 2009, , 446-456.	1.0	8
52	Requirements for total uncertainty measures in Dempster–Shafer theory of evidence. International Journal of General Systems, 2008, 37, 733-747.	1.2	71
53	Measuring total uncertainty in Dempster-Shafer theory of Evidence: properties and behaviors. , 2008, , .		1
54	Hill-climbing and branch-and-bound algorithms for exact and approximate inference in credal networks. International Journal of Approximate Reasoning, 2007, 44, 261-280.	1.9	22

#	Article	IF	CITATIONS
55	A Semi-naive Bayes Classifier with Grouping of Cases. Lecture Notes in Computer Science, 2007, , 477-488.	1.0	3
56	Combining Decision Trees Based on Imprecise Probabilities and Uncertainty Measures. Lecture Notes in Computer Science, 2007, , 512-523.	1.0	7
57	Uncertainty measures on probability intervals from the imprecise Dirichlet model. International Journal of General Systems, 2006, 35, 509-528.	1.2	49
58	Application of uncertainty measures on credal sets on the naive Bayesian classifier. International Journal of General Systems, 2006, 35, 675-686.	1,2	9
59	Measures of divergence on credal sets. Fuzzy Sets and Systems, 2006, 157, 1514-1531.	1.6	17
60	AN ALGORITHM TO COMPUTE THE UPPER ENTROPY FOR ORDER-2 CAPACITIES. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2006, 14, 141-154.	0.9	30
61	Upper entropy of credal sets. Applications to credal classification. International Journal of Approximate Reasoning, 2005, 39, 235-255.	1.9	58
62	Additivity of uncertainty measures on credal sets. International Journal of General Systems, 2005, 34, 691-713.	1,2	11
63	Difference of entropies as a non-specificity function on credal setsâ€. International Journal of General Systems, 2005, 34, 201-214.	1.2	29
64	Building classification trees using the total uncertainty criterion. International Journal of Intelligent Systems, 2003, 18, 1215-1225.	3.3	110
65	MAXIMUM OF ENTROPY FOR CREDAL SETS. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2003, 11, 587-597.	0.9	54
66	A NON-SPECIFICITY MEASURE FOR CONVEX SETS OF PROBABILITY DISTRIBUTIONS. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2000, 08, 357-367.	0.9	34
67	COMPLETING A TOTAL UNCERTAINTY MEASURE IN THE DEMPSTER-SHAFER THEORY. International Journal of General Systems, 1999, 28, 299-314.	1.2	29
68	A Decision Support Tool for Credit Domains: Bayesian Network with a Variable Selector Based on Imprecise Probabilities. International Journal of Fuzzy Systems, 0, , 1.	2.3	1