JoaquÃ-n AbellÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1925388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of traffic accident severity using Decision Rules via Decision Trees. Expert Systems With Applications, 2013, 40, 6047-6054.	4.4	171
2	A comparative study on base classifiers in ensemble methods for credit scoring. Expert Systems With Applications, 2017, 73, 1-10.	4.4	171
3	Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems With Applications, 2014, 41, 3825-3830.	4.4	126
4	Building classification trees using the total uncertainty criterion. International Journal of Intelligent Systems, 2003, 18, 1215-1225.	3.3	110
5	Extracting decision rules from police accident reports through decision trees. Accident Analysis and Prevention, 2013, 50, 1151-1160.	3.0	104
6	Credal-C4.5: Decision tree based on imprecise probabilities to classify noisy data. Expert Systems With Applications, 2014, 41, 4625-4637.	4.4	92
7	Analyzing properties of Deng entropy in the theory of evidence. Chaos, Solitons and Fractals, 2017, 95, 195-199.	2.5	73
8	Requirements for total uncertainty measures in Dempster–Shafer theory of evidence. International Journal of General Systems, 2008, 37, 733-747.	1.2	71
9	Upper entropy of credal sets. Applications to credal classification. International Journal of Approximate Reasoning, 2005, 39, 235-255.	1.9	58
10	A comparison of random forest based algorithms: random credal random forest versus oblique random forest. Soft Computing, 2019, 23, 10739-10754.	2.1	56
11	MAXIMUM OF ENTROPY FOR CREDAL SETS. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2003, 11, 587-597.	0.9	54
12	Bagging schemes on the presence of class noise in classification. Expert Systems With Applications, 2012, 39, 6827-6837.	4.4	54
13	Uncertainty measures on probability intervals from the imprecise Dirichlet model. International Journal of General Systems, 2006, 35, 509-528.	1.2	49
14	A Random Forest approach using imprecise probabilities. Knowledge-Based Systems, 2017, 134, 72-84.	4.0	44
15	An ensemble method using credal decision trees. European Journal of Operational Research, 2010, 205, 218-226.	3.5	42
16	Increasing diversity in random forest learning algorithm via imprecise probabilities. Expert Systems With Applications, 2018, 97, 228-243.	4.4	38
17	Analysis and extension of decision trees based on imprecise probabilities: Application on noisy data. Expert Systems With Applications, 2014, 41, 2514-2525.	4.4	36
18	A NON-SPECIFICITY MEASURE FOR CONVEX SETS OF PROBABILITY DISTRIBUTIONS. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2000, 08, 357-367.	0.9	34

JoaquÃn AbellÃin

#	Article	IF	CITATIONS
19	Analysis of Credal-C4.5 for classification in noisy domains. Expert Systems With Applications, 2016, 61, 314-326.	4.4	32
20	Decision Tree Ensemble Method for Analyzing Traffic Accidents of Novice Drivers in Urban Areas. Entropy, 2019, 21, 360.	1.1	31
21	AN ALGORITHM TO COMPUTE THE UPPER ENTROPY FOR ORDER-2 CAPACITIES. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2006, 14, 141-154.	0.9	30
22	Improving the Naive Bayes Classifier via a Quick Variable Selection Method Using Maximum of Entropy. Entropy, 2017, 19, 247.	1.1	30
23	Drawbacks of Uncertainty Measures Based on the Pignistic Transformation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 382-388.	5.9	30
24	Bagging of credal decision trees for imprecise classification. Expert Systems With Applications, 2020, 141, 112944.	4.4	30
25	COMPLETING A TOTAL UNCERTAINTY MEASURE IN THE DEMPSTER-SHAFER THEORY. International Journal of General Systems, 1999, 28, 299-314.	1.2	29
26	Difference of entropies as a non-specificity function on credal setsâ€. International Journal of General Systems, 2005, 34, 201-214.	1.2	29
27	Patterns of Single-Vehicle Crashes on Two-Lane Rural Highways in Granada Province, Spain. Transportation Research Record, 2014, 2432, 133-141.	1.0	29
28	Ensembles of decision trees based on imprecise probabilities and uncertainty measures. Information Fusion, 2013, 14, 423-430.	11.7	28
29	Classification with decision trees from a nonparametric predictive inference perspective. Computational Statistics and Data Analysis, 2014, 71, 789-802.	0.7	25
30	Hill-climbing and branch-and-bound algorithms for exact and approximate inference in credal networks. International Journal of Approximate Reasoning, 2007, 44, 261-280.	1.9	22
31	Maximising entropy on the nonparametric predictive inference model for multinomial data. European Journal of Operational Research, 2011, 212, 112-122.	3.5	22
32	Combining nonspecificity measures in Dempster–Shafer theory of evidence. International Journal of General Systems, 2011, 40, 611-622.	1.2	22
33	Critique of Recent Uncertainty Measures Developed Under the Evidence Theory and Belief Intervals. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 1186-1192.	5.9	21
34	Critique of modified Deng entropies under the evidence theory. Chaos, Solitons and Fractals, 2020, 140, 110112.	2.5	21
35	IMPRECISE CLASSIFICATION WITH CREDAL DECISION TREES. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2012, 20, 763-787.	0.9	20
36	Measures of divergence on credal sets. Fuzzy Sets and Systems, 2006, 157, 1514-1531.	1.6	17

JoaquÃn AbellÃin

#	Article	IF	CITATIONS
37	Combination in the theory of evidence via a new measurement of the conflict between evidences. Expert Systems With Applications, 2021, 178, 114987.	4.4	15
38	A FILTER-WRAPPER METHOD TO SELECT VARIABLES FOR THE NAIVE BAYES CLASSIFIER BASED ON CREDAL DECISION TREES. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2009, 17, 833-854.	0.9	14
39	AdaptativeCC4.5: Credal C4.5 with a rough class noise estimator. Expert Systems With Applications, 2018, 92, 363-379.	4.4	14
40	Ensemble of classifier chains and Credal C4.5 for solving multi-label classification. Progress in Artificial Intelligence, 2019, 8, 195-213.	1.5	12
41	Additivity of uncertainty measures on credal sets. International Journal of General Systems, 2005, 34, 691-713.	1.2	11
42	Application of uncertainty measures on credal sets on the naive Bayesian classifier. International Journal of General Systems, 2006, 35, 675-686.	1.2	9
43	Maximum of Entropy for Belief Intervals Under Evidence Theory. IEEE Access, 2020, 8, 118017-118029.	2.6	9
44	A New Robust Classifier on Noise Domains: Bagging of Credal C4.5 Trees. Complexity, 2017, 2017, 1-17.	0.9	8
45	An Experimental Study about Simple Decision Trees for Bagging Ensemble on Datasets with Classification Noise. Lecture Notes in Computer Science, 2009, , 446-456.	1.0	8
46	Combining Decision Trees Based on Imprecise Probabilities and Uncertainty Measures. Lecture Notes in Computer Science, 2007, , 512-523.	1.0	7
47	Equivalence relations among dominance concepts on probability intervals and general credal sets. International Journal of General Systems, 2012, 41, 109-122.	1.2	6
48	An application of Non-Parametric Predictive Inference on multi-class classification high-level-noise problems. Expert Systems With Applications, 2013, 40, 4585-4592.	4.4	6
49	Non-parametric predictive inference for solving multi-label classification. Applied Soft Computing Journal, 2020, 88, 106011.	4.1	6
50	Required mathematical properties and behaviors of uncertainty measures on belief intervals. International Journal of Intelligent Systems, 2021, 36, .	3.3	6
51	Using Credal C4.5 for Calibrated Label Ranking in Multi-Label Classification. International Journal of Approximate Reasoning, 2022, 147, 60-77.	1.9	6
52	Extraction of decision rules via imprecise probabilities. International Journal of General Systems, 2017, 46, 313-331.	1.2	5
53	Credal Decision Trees to Classify Noisy Data Sets. Lecture Notes in Computer Science, 2014, , 689-696.	1.0	4
54	A Semi-naive Bayes Classifier with Grouping of Cases. Lecture Notes in Computer Science, 2007, , 477-488.	1.0	3

JoaquÃn AbellÃin

#	Article	IF	CITATIONS
55	A cost-sensitive Imprecise Credal Decision Tree based on Nonparametric Predictive Inference. Applied Soft Computing Journal, 2022, 123, 108916.	4.1	3
56	A memory efficient semi-Naive Bayes classifier with grouping of cases. Intelligent Data Analysis, 2011, 15, 299-318.	0.4	2
57	Remarks on "A new non-specificity measure in evidence theory based on belief intervals― Chinese Journal of Aeronautics, 2018, 31, 529-533.	2.8	2
58	Basic Properties for Total Uncertainty Measures in the Theory of Evidence. Information Fusion and Data Science, 2019, , 99-108.	0.3	2
59	On the Use of m-Probability-Estimation and Imprecise Probabilities in the NaÃ ⁻ ve Bayes Classifier. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2020, 28, 661-682.	0.9	2
60	Credal sets representable by reachable probability intervals and belief functions. International Journal of Approximate Reasoning, 2021, 129, 84-102.	1.9	2
61	Measuring total uncertainty in Dempster-Shafer theory of Evidence: properties and behaviors. , 2008, ,		1
62	Determining dependence relations using a new score based on imprecise probabilities. Intelligent Data Analysis, 2012, 16, 847-863.	0.4	1
63	Uncertainty-based information measures on the approximate non-parametric predictive inference model. International Journal of General Systems, 2021, 50, 159-181.	1.2	1
64	A Decision Support Tool for Credit Domains: Bayesian Network with a Variable Selector Based on Imprecise Probabilities. International Journal of Fuzzy Systems, 0, , 1.	2.3	1
65	Using Imprecise Probabilities to Extract Decision Rules via Decision Trees for Analysis of Traffic Accidents. Lecture Notes in Computer Science, 2014, , 288-298.	1.0	1
66	Combination in Dempster-Shafer Theory Based on a Disagreement Factor Between Evidences. Lecture Notes in Computer Science, 2019, , 148-159.	1.0	1
67	Using extreme prior probabilities on the Naive Credal Classifier. Knowledge-Based Systems, 2021, 237, 107707.	4.0	0
68	A new label ordering method in Classifier Chains based on imprecise probabilities. Neurocomputing, 2022, 487, 34-45.	3.5	0