
Jitae Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/192507/publications.pdf Version: 2024-02-01

LITAE KIM

#	Article	IF	CITATIONS
1	Nuclear pore complex components have temperatureâ€influenced roles in plant growth and immunity. Plant, Cell and Environment, 2020, 43, 1452-1466.	5.7	20
2	Consequences of the loss of catalytic triads in chloroplast CLPPR protease core complexes inÂvivo. Plant Direct, 2018, 2, e00086.	1.9	8
3	Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity. Plant Physiology, 2017, 175, 424-437.	4.8	66
4	Structures, Functions, and Interactions of ClpT1 and ClpT2 in the Clp Protease System of Arabidopsis Chloroplasts. Plant Cell, 2015, 27, 1477-1496.	6.6	40
5	Discovery of a Unique Clp Component, ClpF, in Chloroplasts: A Proposed Binary ClpF-ClpS1 Adaptor Complex Functions in Substrate Recognition and Delivery. Plant Cell, 2015, 27, tpc.15.00574.	6.6	63
6	The Arabidopsis Chloroplast stromal N-terminome; complexities of N-terminal protein maturation and stability. Plant Physiology, 2015, 169, pp.01214.2015.	4.8	73
7	The Clp protease system is required for copper ionâ€dependent turnover of the <scp>PAA</scp> 2/ <scp>HMA</scp> 8 copper transporter in chloroplasts. New Phytologist, 2015, 205, 511-517.	7.3	29
8	ClpS1 Is a Conserved Substrate Selector for the Chloroplast Clp Protease System in Arabidopsis. Plant Cell, 2013, 25, 2276-2301.	6.6	98
9	Modified Clp Protease Complex in the ClpP3 Null Mutant and Consequences for Chloroplast Development and Function in Arabidopsis Â. Plant Physiology, 2013, 162, 157-179.	4.8	55
10	Subunit Stoichiometry, Evolution, and Functional Implications of an Asymmetric Plant Plastid ClpP/R Protease Complex in Arabidopsis Â. Plant Cell, 2011, 23, 2348-2361.	6.6	64
11	The Clp protease system; a central component of the chloroplast protease network. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 999-1011.	1.0	125
12	Large Scale Comparative Proteomics of a Chloroplast Clp Protease Mutant Reveals Folding Stress, Altered Protein Homeostasis, and Feedback Regulation of Metabolism. Molecular and Cellular Proteomics, 2009, 8, 1789-1810.	3.8	127
13	Subunits of the Plastid ClpPR Protease Complex Have Differential Contributions to Embryogenesis, Plastid Biogenesis, and Plant Development in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 1669-1692.	6.6	134
14	Mitogen-activated protein kinase is involved in the symbiotic interaction betweenBradyrhizobium japonicum USDA110 and soybean. Journal of Plant Biology, 2008, 51, 291-296.	2.1	9