Juan Carlos Begara-Morales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1924869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitro-Oleic Acid-Mediated Nitroalkylation Modulates the Antioxidant Function of Cytosolic Peroxiredoxin Tsa1 during Heat Stress in Saccharomyces cerevisiae. Antioxidants, 2022, 11, 972.	2.2	3
2	Role of electrophilic nitrated fatty acids during development and response to abiotic stress processes in plants. Journal of Experimental Botany, 2021, 72, 917-927.	2.4	11
3	Editorial: Nitric Oxide in Plants. Frontiers in Plant Science, 2021, 12, 705157.	1.7	6
4	New Insights into the Functional Role of Nitric Oxide and Reactive Oxygen Species in Plant Response to Biotic and Abiotic Stress Conditions. Plant in Challenging Environments, 2021, , 215-235.	0.4	1
5	Altered Plant and Nodule Development and Protein S-Nitrosylation in Lotus japonicus Mutants Deficient in S-Nitrosoglutathione Reductases. Plant and Cell Physiology, 2020, 61, 105-117.	1.5	25
6	Nitric oxide under abiotic stress conditions. , 2020, , 735-754.		6
7	Role of nitric oxide–dependent posttranslational modifications of proteins under abiotic stress. , 2020, , 793-809.		2
8	Oxidative Stress in Plants. Antioxidants, 2020, 9, 481.	2.2	54
9	Endogenous Biosynthesis of S-Nitrosoglutathione From Nitro-Fatty Acids in Plants. Frontiers in Plant Science, 2020, 11, 962.	1.7	13
10	Short-Term Low Temperature Induces Nitro-Oxidative Stress that Deregulates the NADP-Malic Enzyme Function by Tyrosine Nitration in Arabidopsis thaliana. Antioxidants, 2019, 8, 448.	2.2	19
11	The function of S-nitrosothiols during abiotic stress in plants. Journal of Experimental Botany, 2019, 70, 4429-4439.	2.4	37
12	Transcriptional Regulation of Gene Expression Related to Hydrogen Peroxide (H2O2) and Nitric Oxide (NO). , 2019, , 69-90.		4
13	Post-Translational Modification of Proteins Mediated by Nitro-Fatty Acids in Plants: Nitroalkylation. Plants, 2019, 8, 82.	1.6	33
14	Nitric oxide buffering and conditional nitric oxide release in stress response. Journal of Experimental Botany, 2018, 69, 3425-3438.	2.4	107
15	Identification of Tyrosine and Nitrotyrosine with a Mixed-Mode Solid-Phase Extraction Cleanup Followed by Liquid Chromatography–Electrospray Time-of-Flight Mass Spectrometry in Plants. Methods in Molecular Biology, 2018, 1747, 161-169.	0.4	1
16	Nitro-Fatty Acid Detection in Plants by High-Pressure Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry. Methods in Molecular Biology, 2018, 1747, 231-239.	0.4	8
17	GSNOR Regulates VND7-Mediated Xylem Vessel Cell Differentiation. Plant and Cell Physiology, 2018, 59, 5-7.	1.5	6
18	Biological properties of nitro-fatty acids in plants. Nitric Oxide - Biology and Chemistry, 2018, 78, 176-179	1.2	16

#	Article	IF	CITATIONS
19	Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism. Redox Biology, 2017, 11, 554-561.	3.9	77
20	Antioxidant Systems are Regulated by Nitric Oxide-Mediated Post-translational Modifications (NO-PTMs). Frontiers in Plant Science, 2016, 7, 152.	1.7	150
21	Protein Tyrosine Nitration during Development and Abiotic Stress Response in Plants. Frontiers in Plant Science, 2016, 7, 1699.	1.7	52
22	Quantification and Localization of S-Nitrosothiols (SNOs) in Higher Plants. Methods in Molecular Biology, 2016, 1424, 139-147.	0.4	4
23	Nitro-linolenic acid is a nitric oxide donor. Nitric Oxide - Biology and Chemistry, 2016, 57, 57-63.	1.2	51
24	Nitric oxide signalling in a CO2-enriched environment. Journal of Experimental Botany, 2016, 67, 560-561.	2.4	7
25	Peroxisomal NADP-isocitrate dehydrogenase is required for Arabidopsis stomatal movement. Protoplasma, 2016, 253, 403-415.	1.0	44
26	Functional Implications of S-Nitrosothiols under Nitrooxidative Stress Induced by Abiotic Conditions. Advances in Botanical Research, 2016, , 79-96.	0.5	5
27	Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis. Plant Physiology, 2016, 170, 686-701.	2.3	116
28	Nitric oxide release from nitro-fatty acids in Arabidopsis roots. Plant Signaling and Behavior, 2016, 11, e1154255.	1.2	22
29	Transcriptomic profiling of linolenic acid-responsive genes in ROS signaling from RNA-seq data in Arabidopsis. Frontiers in Plant Science, 2015, 6, 122.	1.7	51
30	Ripening of pepper (<i>Capsicum annuum</i>) fruit is characterized by an enhancement of protein tyrosine nitration. Annals of Botany, 2015, 116, 637-647.	1.4	141
31	Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and <i>S</i> -nitrosylation. Journal of Experimental Botany, 2015, 66, 5983-5996.	2.4	153
32	Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (<i>Capsicum annuum</i>) seedlings. Annals of Botany, 2015, 116, 679-693.	1.4	46
33	Nitration and S-Nitrosylation: Two Post-translational Modifications (PTMs) Mediated by Reactive Nitrogen Species (RNS) and Their Role in Signalling Processes of Plant Cells. Signaling and Communication in Plants, 2015, , 267-281.	0.5	17
34	Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and <i>S</i> -nitrosylation. Journal of Experimental Botany, 2014, 65, 527-538.	2.4	294
35	Differential Transcriptomic Analysis by RNA-Seq of GSNO-Responsive Genes Between Arabidopsis Roots and Leaves. Plant and Cell Physiology, 2014, 55, 1080-1095.	1.5	124
36	Vinyl sulfone silica: application of an open preactivated support to the study of transnitrosylation of plant proteins by S-nitrosoglutathione. BMC Plant Biology, 2013, 13, 61.	1.6	39

#	Article	IF	CITATIONS
37	Inhibition of peroxisomal hydroxypyruvate reductase (HPR1) by tyrosine nitration. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4981-4989.	1.1	62
38	Tyrosine nitration provokes inhibition of sunflower carbonic anhydrase (β-CA) activity under high temperature stress. Nitric Oxide - Biology and Chemistry, 2013, 29, 30-33.	1.2	80
39	Protein tyrosine nitration in pea roots during development and senescence. Journal of Experimental Botany, 2013, 64, 1121-1134.	2.4	171
40	Determination of nitrotyrosine in Arabidopsis thaliana cell cultures with a mixed-mode solid-phase extraction cleanup followed by liquid chromatography time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 404, 1495-1503.	1.9	9
41	Functional analysis of superoxide dismutases (SODs) in sunflower under biotic and abiotic stress conditions. Identification of two new genes of mitochondrial Mn-SOD. Journal of Plant Physiology, 2011, 168, 1303-1308.	1.6	59
42	High temperature triggers the metabolism of <i>S</i> â€nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin–NADP reductase by tyrosine nitration. Plant, Cell and Environment, 2011, 34, 1803-1818.	2.8	145
43	Mechanical wounding induces a nitrosative stress by down-regulation of CSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. Journal of Experimental Botany, 2011, 62, 1803-1813.	2.4	157
44	Involvement of Reactive Nitrogen and Oxygen Species (RNS and ROS) in Sunflower-Mildew Interaction. Plant and Cell Physiology, 2009, 50, 665-679.	1.5	16
45	Involvement of Reactive Nitrogen and Oxygen Species (RNS and ROS) in Sunflower–Mildew Interaction. Plant and Cell Physiology, 2009, 50, 265-279.	1.5	168
46	Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. Journal of Experimental Botany, 2009, 60, 4221-4234.	2.4	180
47	Metabolism of Reactive Nitrogen Species in Pea Plants Under Abiotic Stress Conditions. Plant and Cell Physiology, 2008, 49, 1711-1722.	1.5	287