M Bomio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1924383/publications.pdf

Version: 2024-02-01

236612 301761 2,164 117 25 39 citations h-index g-index papers 118 118 118 1980 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Morphology and Blue Photoluminescence Emission of PbMoO ₄ Processed in Conventional Hydrothermal. Journal of Physical Chemistry C, 2009, 113, 5812-5822.	1.5	171
2	Electrochemical evaluation of CuFe2O4 samples obtained by sol–gel methods used as anodes in lithium batteries. Journal of Solid State Electrochemistry, 2008, 12, 729-737.	1.2	85
3	Toward Understanding the Photocatalytic Activity of PbMoO ₄ Powders with Predominant (111), (100), (011), and (110) Facets. A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2013, 117, 21382-21395.	1.5	76
4	Structural refinement, growth mechanism, infrared/Raman spectroscopies and photoluminescence properties of PbMoO4 crystals. Polyhedron, 2013, 50, 532-545.	1.0	63
5	White photoluminescence emission from ZrO2 co-doped with Eu3+, Tb3+ and Tm3+. Journal of Alloys and Compounds, 2016, 674, 245-251.	2.8	58
6	TiO2/PDMS nanocomposites for use on self-cleaning surfaces. Surface and Coatings Technology, 2014, 239, 16-19.	2.2	53
7	Study of the photocatalysis and increase of antimicrobial properties of Fe3+and Pb2+ co-doped ZnO nanoparticles obtained by microwave-assisted hydrothermal method. Materials Science in Semiconductor Processing, 2019, 93, 123-133.	1.9	53
8	Connecting the surface structure, morphology and photocatalytic activity of Ag2O: An in depth and unified theoretical investigation. Applied Surface Science, 2020, 509, 145321.	3.1	51
9	Photoluminescent properties of ZrO2: Tm3+, Tb3+, Eu3+ powdersâ€"A combined experimental and theoretical study. Journal of Alloys and Compounds, 2017, 695, 3094-3103.	2.8	50
10	Connecting theory with experiment to understand the photocatalytic activity of CuO–ZnO heterostructure. Ceramics International, 2020, 46, 9446-9454.	2.3	50
11	Structural, electronic, vibrational and magnetic properties of Zn2+ substituted MnCr2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2020, 502, 166595.	1.0	48
12	⁵⁷ Fe Mössbauer Spectroscopy and Electron Microscopy Study of Metal Extraction from CuFe ₂ O ₄ Electrodes in Lithium Cells. ChemPhysChem, 2007, 8, 1999-2007.	1.0	47
13	Understanding the White-Emitting CaMoO ₄ Co-Doped Eu ³⁺ , Tb ³⁺ , and Tm ³⁺ Phosphor through Experiment and Computation. Journal of Physical Chemistry C, 2019, 123, 18536-18550.	1.5	45
14	Experimental and theoretical study to explain the morphology of CaMoO 4 crystals. Journal of Physics and Chemistry of Solids, 2018, 114, 141-152.	1.9	42
15	Optimizing the synthesis of cobalt aluminate pigment using fractional factorial design. Ceramics International, 2015, 41, 699-706.	2.3	34
16	Structure, morphology and photoluminescence emissions of ZnMoO4: RE 3+=Tb3+ - Tm3+ - X Eu3+ (xÂ= 1,) Tj E Compounds, 2018, 750, 55-70.	TQq0 0 0 2.8	rgBT /Overloc 34
17	Preparation and photoluminescence characteristics of In(OH)3:xTb3+ obtained by Microwave-Assisted Hydrothermal method. Journal of Alloys and Compounds, 2013, 553, 338-342.	2.8	32
18	Structural, electronic and magnetic properties of Sc ³⁺ doped CoCr ₂ O ₄ nanoparticles. New Journal of Chemistry, 2020, 44, 14246-14255.	1.4	31

#	Article	IF	Citations
19	Photoluminescent properties of the Ba1â^'xZnxMoO4 heterostructure obtained by ultrasonic spray pyrolysis. Ceramics International, 2018, 44, 3775-3786.	2.3	28
20	Synthesis and characterization of Ag+ and Zn2+ co-doped CaWO4 nanoparticles by a fast and facile sonochemical method. Journal of Alloys and Compounds, 2020, 823, 153617.	2.8	28
21	Recent progress and approaches on the synthesis of Mn-doped zinc oxide nanoparticles: a theoretical and experimental investigation on the photocatalytic performance. New Journal of Chemistry, 2020, 44, 8805-8812.	1.4	28
22	Photoluminescence properties of (Eu, Tb, Tm) co-doped PbMoO4 obtained by sonochemical synthesis. Journal of Alloys and Compounds, 2017, 700, 130-137.	2.8	27
23	Influence of pH on the morphology and photocatalytic activity of CuO obtained by the sonochemical method using different surfactants. Ceramics International, 2019, 45, 651-658.	2.3	27
24	Characterization and photocatalytic application of Ce4+, Co2+, Mn2+ and Ni2+ doped Fe3O4 magnetic nanoparticles obtained by the co-precipitation method. Materials Chemistry and Physics, 2020, 242, 122489.	2.0	27
25	Nonohmic behavior of SnO2-MnO polycrystalline ceramics. II. Analysis of admittance and dielectric spectroscopy. Journal of Applied Physics, 2004, 96, 3811-3817.	1.1	26
26	Effect of temperature on the morphology and optical properties of Ag2WO4 obtained by the co-precipitation method: Photocatalytic activity. Ceramics International, 2019, 45, 15205-15212.	2.3	24
27	One-step synthesis of CaMoO4: Eu3+ nanospheres by ultrasonic spray pyrolysis. Journal of Materials Science: Materials in Electronics, 2017, 28, 16867-16879.	1.1	23
28	Photocatalytic activity and photoluminescence properties of TiO2, In2O3, TiO2/In2O3 thin films multilayer. Journal of Materials Science: Materials in Electronics, 2018, 29, 6530-6542.	1.1	23
29	Influence of microwave-assisted hydrothermal treatment time on the crystallinity, morphology and optical properties of ZnWO4 nanoparticles: Photocatalytic activity. Ceramics International, 2020, 46, 1766-1774.	2.3	23
30	Temperature dependence on phase evolution in the BaTiO ₃ polytypes studied using ab initio calculations. International Journal of Quantum Chemistry, 2020, 120, e26054.	1.0	23
31	Disclosing the Structural, Electronic, Magnetic, and Morphological Properties of CuMnO ₂ : A Unified Experimental and Theoretical Approach. Journal of Physical Chemistry C, 2020, 124, 5378-5388.	1.5	22
32	Effect of polyvinyl alcohol on the shape, photoluminescence and photocatalytic properties of PbMoO4 microcrystals. Materials Science in Semiconductor Processing, 2014, 26, 425-430.	1.9	21
33	Influence of variables on the synthesis of CoFe2O4 pigment by the complex polymerization method. Journal of Advanced Ceramics, 2015, 4, 135-141.	8.9	20
34	Photoluminescence and photocatalytic properties of Ag/AgCl synthesized by sonochemistry: statistical experimental design. Journal of Materials Science: Materials in Electronics, 2017, 28, 12273-12281.	1.1	20
35	White light emission from single-phase Y2MoO6: xPr3+ (xÂ= 1, 2, 3 and 4†mol%) phosphor. Journal of Alloys and Compounds, 2018, 769, 420-429.	2.8	20
36	Tb3+/Pr3+ co-doped ZnMoO4 phosphor with tunable photoluminescence and energy transfer processes. Optical Materials, 2019, 96, 109332.	1.7	20

#	Article	IF	CITATIONS
37	Fast and continuous obtaining of Eu3+ doped CeO2 microspheres by ultrasonic spray pyrolysis: characterization and photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2019, 30, 11508-11519.	1.1	20
38	Influence of solution pH on forming silver molybdates obtained by sonochemical method and its application for methylene blue degradation. Ceramics International, 2019, 45, 11448-11456.	2.3	20
39	Synthesis and characterization of Y (In, Mn) O3 blue pigment using the complex polymerization method (CPM). Ceramics International, 2018, 44, 11932-11939.	2.3	19
40	Increase of antimicrobial and photocatalytic properties of silver-doped PbS obtained by sonochemical method. Journal of Materials Science: Materials in Electronics, 2018, 29, 19052-19062.	1.1	19
41	Increased Degradation Capacity of Methylene Blue Dye Using Mg-doped ZnO Nanoparticles Decorated by AgO Nanoparticles. Journal of Electronic Materials, 2019, 48, 3017-3025.	1.0	19
42	Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method. Journal of Electronic Materials, 2019, 48, 3145-3156.	1.0	19
43	Growth mechanism and vibrational and optical properties of SrMoO4: Tb3+, Sm3+ particles: green–orange tunable color. Journal of Materials Science, 2020, 55, 8610-8629.	1.7	19
44	Enhanced photocatalytic activity of CaMoO4/ g -C3N4 composites obtained via sonochemistry synthesis. Materials Research Bulletin, 2022, 146, 111621.	2.7	19
45	Spray pyrolysis synthesis and characterization of Mg1-xSrxMoO4 heterostructure with white light emission. Journal of Alloys and Compounds, 2020, 813, 152235.	2.8	18
46	Computational procedure to an accurate DFT simulation to solid state systems. Computational Materials Science, 2019, 170, 109176.	1.4	17
47	Synthesis and characterization of \hat{l} ±-Ag2MoO4 \hat{l} 2-Ag2MoO4 heterostructure obtained by fast and simple ultrasonic spray pyrolysis method at different temperatures. Journal of Materials Science: Materials in Electronics, 2020, 31, 4271-4278.	1.1	17
48	Nonlinear behavior of TiO2·Ta2O5·MnO2 material doped with BaO and Bi2O3. Materials Chemistry and Physics, 2004, 85, 96-103.	2.0	16
49	Effects of MnO2/In2O3 thin films on photocatalytic degradation 17 alpha-ethynylestradiol and methylene blue in water. Journal of Materials Science: Materials in Electronics, 2018, 29, 12278-12287.	1.1	16
50	Photocatalytic Properties under Sunlight of Heterostructures AgCl/CuO Obtained by Sonochemical Method. Plasmonics, 2019, 14, 79-89.	1.8	16
51	Development of ZnO/PDMS nanocomposite with photocatalytic/hydrophobic multifunction. Chemical Physics Letters, 2020, 740, 137051.	1.2	15
52	Evaluation of morphology and photoluminescent properties of PbMoO4 crystals by ultrasonic amplitude. Journal of Materials Science, 2017, 52, 4608-4620.	1.7	14
53	Influence Ca-doped SrIn2O4 powders on photoluminescence property prepared one step by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 2018, 747, 1078-1087.	2.8	14
54	The use of clinoptilolite as carrier of nitrogened fertilizer with controlled release. Journal of Environmental Chemical Engineering, 2018, 6, 4171-4177.	3.3	14

#	Article	IF	CITATIONS
55	First principle investigation of the exposed surfaces and morphology of \hat{l}^2 -ZnMoO4. Journal of Applied Physics, 2019, 126, 235301.	1.1	14
56	Stabilization of the \hat{I}^3 -Ag2WO4 metastable pure phase by coprecipitation method using polyvinylpyrrolidone as surfactant: Photocatalytic property. Ceramics International, 2020, 46, 14864-14871.	2.3	14
57	Effect of calcium on the structural properties of $Ba(1\hat{a}^2x)Ca \times TiO3$ particles synthesized by complex polymerization method. Journal of Materials Science, 2014, 49, 2875-2878.	1.7	13
58	Influence of Zn1-xCaxWO4 heterostructures synthesized by spray pyrolysis on photoluminescence property. Ceramics International, 2019, 45, 23256-23264.	2.3	13
59	Synthesis, characterization, optical properties investigation and reusability photocatalyst capacity of AgCl-xGO composite. Journal of Materials Science: Materials in Electronics, 2019, 30, 15214-15223.	1.1	13
60	On the use of guanidine hydrochloride soft template in the synthesis of Na2/3Ni1/3Mn2/3O2 cathodes for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 789, 1035-1045.	2.8	13
61	Atomistic Perspective on the Intrinsic White-Light Photoluminescence of Rare-Earth Free MgMoO ₄ Nanoparticles. Crystal Growth and Design, 2020, 20, 6592-6603.	1.4	13
62	Study of microstructural, mechanical, and biomedical properties of zirconia/hydroxyapatite ceramic composites. Ceramics International, 2022, 48, 12376-12386.	2.3	13
63	Effect of atmosphere on the electrical properties of TiO2–SnO2varistor systems. Journal of Materials Science: Materials in Electronics, 2004, 15, 665-669.	1.1	12
64	Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries. Materials Research, 2014, 17, 1065-1070.	0.6	12
65	Influence of synthesis parameters on properties and characteristics of poly (urea-formaldehyde) microcapsules for self-healing applications. Journal of Microencapsulation, 2019, 36, 410-419.	1.2	12
66	Structure, electronic properties, morphology evolution, and photocatalytic activity in PbMoO $<$ sub $>4<$ sub $>$ and Pb $<$ sub $>1a^22x<$ sub $>$ Ca $<$ sub $>x<$ sub $>$ Sr $<$ sub $>x<$ sub $>MoO<sub>4<sub>Ca<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<sub>x<subxs$	1.3	12
67	Enhancement of the photocatalytic activity and white emission of Caln 2 O 4 nanocrystals. Journal of Alloys and Compounds, 2016, 658, 316-323.	2.8	11
68	Antimicrobial activity from polymeric composites-based polydimethylsiloxane/TiO2/GO: evaluation of filler synthesis and surface morphology. Polymer Bulletin, 2017, 74, 2379-2390.	1.7	11
69	Fast and simultaneous doping of Sr0.9â^'â^'â^'Ca0.1ln2O4:(xEu3+, yTm3+, zTb3+) superstructure by ultrasonic spray pyrolysis. Ultrasonics Sonochemistry, 2019, 56, 14-24.	3.8	11
70	Microwave-assisted hydrothermal synthesis of Ag2Mo1-xWxO4 (xÂ= 0, 0.25, 0.50, 0.75 and 1Âmol%) heterostructures for enhanced photocatalytic degradation of organic dyes. Journal of Alloys and Compounds, 2020, 844, 156077.	2.8	11
71	Cerium molybdate nanocrystals: Microstructural, optical and gas-sensing properties. Journal of Alloys and Compounds, 2021, 857, 157562.	2.8	11
72	Enhanced Photocatalytic Properties of Zinc-Doped CuO Decorated with Silver Obtained by Microwave-Assisted Hydrothermal Method: Statistical Factorial Design. Journal of Electronic Materials, 2019, 48, 4840-4849.	1.0	10

#	Article	IF	Citations
73	Synthesis and Characterization of Co2+ and Mn2+ Codoped ZnO Nanoparticles Obtained by the Sonochemical Method: Photocatalytic and Antimicrobial Properties. Journal of Electronic Materials, 2019, 48, 5900-5905.	1.0	9
74	Fast and facile sonochemical synthesis of Mg- and Zn-doped PbS nanospheres: optical properties and photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2020, 31, 14192-14202.	1.1	9
75	Influence of pH variation on CuWO4, CuWO4/WO3 and CuWO4/CuO structures stabilization: study of the photocatalytic properties under sunlight. Journal of Materials Science: Materials in Electronics, 2020, 31, 18221-18233.	1.1	9
76	Quantum mechanical modeling of Znâ€based spinel oxides: Assessing the structural, vibrational, and electronic properties. International Journal of Quantum Chemistry, 2020, 120, e26368.	1.0	9
77	Red-emitting CaWO4:Eu3+,Tm3+ phosphor for solid-state lighting: Luminescent properties and morphology evolution. Journal of Rare Earths, 2022, 40, 226-233.	2.5	9
78	Preparation and photocatalytic properties of hexagonal-shaped ZnO:Sm3+ by microwave-assisted hydrothermal method. Journal of Materials Science: Materials in Electronics, 2017, 28, 7943-7950.	1.1	8
79	Presence of excited electronic states on terbium incorporation in CaMoO4: Insights from experimental synthesis and first-principles calculations. Journal of Physics and Chemistry of Solids, 2021, 149, 109790.	1.9	8
80	Simulation and design of a tuneable ferrite resonator antenna based on nanostructured nickel ferrite material. IET Microwaves, Antennas and Propagation, 2015, 9, 1618-1622.	0.7	7
81	Heterostructures obtained by ultrasonic methods for photocatalytic application: A review. Materials Science in Semiconductor Processing, 2022, 139, 106311.	1.9	7
82	Fast photocatalytic degradation of an organic dye and photoluminescent properties of Zn doped In(OH)3 obtained by the microwave-assisted hydrothermal method. Materials Science in Semiconductor Processing, 2014, 27, 1036-1041.	1.9	6
83	Effect of different starting materials on the synthesis of Ba0.8Ca0.2TiO3. Journal of Advanced Ceramics, 2015, 4, 65-70.	8.9	6
84	Enhanced red emission in Sr(1-x)EuxMo0.5W0.5O4 (x = 0.01, 0.02, 0.04) phosphor and spectroscopic analysis for display applications. Journal of Materials Science, 2022, 57, 8634-8647.	1.7	6
85	Optical characterization of europium-doped indium hydroxide nanocubes obtained by Microwave-Assisted Hydrothermal method. Materials Research, 2014, 17, 933-939.	0.6	5
86	Rapid calcination of ferrite Ni0.75Zn0.25Fe2O4 by microwave energy. Journal of Thermal Analysis and Calorimetry, 2014, 118, 277-285.	2.0	5
87	Experimental statistic design applied for obtaining Zn:xCe by microwave-assisted hydrothermal method with photocatalytic property. Journal of Advanced Ceramics, 2016, 5, 103-110.	8.9	5
88	Effect of Ag clusters doping on the photoluminescence, photocatalysis and magnetic properties of ZnO nanorods prepared by facile microwave-assisted hydrothermal synthesis. Journal of Materials Science: Materials in Electronics, 2017, 28, 11059-11069.	1.1	5
89	Effect of the Eu3+ (x = 0, 1, 2 and 3Âmol%) doped Zn2â^'xTiO4 and Zn2Ti1â^'xO4 obtained by complex polymerization method: photoluminescent and photocatalytic properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 20979-20988.	1.1	5
90	Influence of Cosurfactant on the Synthesis of Surfaceâ€Modified Na 2/3 Ni 1/3 Mn 2/3 O 2 as a Cathode for Sodiumâ€ion Batteries. ChemElectroChem, 2020, 7, 3528-3534.	1.7	5

#	Article	IF	Citations
91	Photoluminescent properties of Sm3+ and Tb3+ codoped CaWO4 nanoparticles obtained by a one-step sonochemical method. Journal of Materials Science: Materials in Electronics, 2020, 31, 13261-13272.	1.1	5
92	Microstructural, structural and optical properties of nanoparticles of PbO-CrO3 pigment synthesized by a soft route. Ceramica, 2015, 61, 118-125.	0.3	4
93	Study of Photocatalytic Properties of Ag/AgCl-Decorated Soybean Protein Knitting Fabric Against Acid Blue 260 Dye by Factorial Design. Journal of Electronic Materials, 2020, 49, 2118-2129.	1.0	4
94	Biofilms of cellulose and hydroxyapatite composites: Alternative synthesis process. Journal of Bioactive and Compatible Polymers, 2020, 35, 469-478.	0.8	4
95	Effect of temperature on ultrasonic spray pyrolysis method in zinc tungstate: The relationship between structural and optical properties. Materials Chemistry and Physics, 2021, 258, 123991.	2.0	4
96	Photoluminescent and antimicrobial properties of silverâ€doped indium hydroxide synthesized by oneâ€step microwaveâ€assisted hydrothermal method. International Journal of Applied Ceramic Technology, 2019, 16, 471-480.	1.1	3
97	Removal study of the hormone17 alpha-ethynylestradiol and methylene blue dye from water using TiO2, Mn2O3 and TiO2/Mn2O3 thin films. Journal of Materials Science: Materials in Electronics, 2020, 31, 9260-9269.	1.1	3
98	Photocatalytic properties of the CeO 2 â€xTiO 2 and TiO 2 â€xCeO 2 (xÂ=Â10, 30, and 50 mol%) heterostructures obtained by a MAH. International Journal of Applied Ceramic Technology, 2020, 17, 2376-2385.	1.1	3
99	Synthesis and characterization of BaWO4:xTm3+,yPr3+ obtained by ultrasonic spray pyrolysis. Journal of Materials Science: Materials in Electronics, 2020, 31, 11599-11608.	1.1	3
100	Antimicrobial and electrical properties of ce―and niâ€doped zns nanoparticles obtained by a sonochemical method. International Journal of Applied Ceramic Technology, 2021, 18, 598-604.	1.1	3
101	Co2FeAl Heusler alloy onto amorphous TiO2 layer: Exploring the quasi-static and dynamic magnetic properties. Journal of Physics and Chemistry of Solids, 2021, 154, 110088.	1.9	3
102	Study of obtaining thin films of CeO2 doped with 2 and 4 mol% of europium, terbium and thulium by spin coating: photocatalytic properties. Ceramica, 2019, 65, 515-522.	0.3	3
103	Integrated experimental and theoretical study on the phase transition and photoluminescent properties of ZrO2:xTb3+ (x=1, 2, 4 and 8 mol %). Materials Research Bulletin, 2022, 145, 111532.	2.7	2
104	Influence of the Number of Layers and Crystallization Temperature on the Photocatalytic Activity of Tio2 / In2O3 Thin Films. Material Science & Engineering International Journal, 2017, 1, .	0.0	2
105	Influence of doping with Sm3+ on photocatalytic reuse of ZnO thin films obtained by spin coating. Revista Materia, 2019, 24, .	0.1	2
106	Freezing Distortions and Photoluminescence Property in PbMoO ₄ Micro- Octahedrons: An Experimental and Theoretical Study. Current Physical Chemistry, 2014, 4, 4-14.	0.1	2
107	Effect of temperature on the photocatalytic properties of TiO2-CeO2 multilayer thin films obtained by spin coating method. Ceramica, 2020, 66, 145-153.	0.3	2
108	Efeito do Pr2O3 nas propriedades elétricas de varistores à base de SnO2. Ceramica, 2003, 49, 232-236.	0.3	1

#	Article	IF	CITATIONS
109	Effect of sintering parameters using the central composite design method, electronic structure and physical properties of yttria-partially stabilized ZrO ₂ commercial ceramics. Materials Science-Poland, 2017, 35, 225-238.	0.4	1
110	Influence of reaction temperature, proportions of iron, cobalt and KOH on the CoFe2O4 synthesis by hydrothermal method assisted by microwave heating. Journal of Materials Science: Materials in Electronics, 2017, 28, 14402-14416.	1.1	1
111	Integration of experiment and computational modeling on the Tb doping process in CaMoO4 obtained by USPÂmethod: An efficient way to obtain photoluminescent materials. ChemPhysChem, 2020, , .	1.0	1
112	Zirconia/hydroxyapatite (80/20) scaffold repair in critical size calvarial defect increased FGF-2, osteocalcin and OPG immunostaining and IL-10 levels. American Journal of Translational Research (discontinued), 2020, 12, 2439-2450.	0.0	1
113	DFT Simulations for Heterogeneous Photocatalysis from ZnO and CuO Semiconductors. Engineering Materials, 2021, , 185-200.	0.3	0
114	Effect of the Heat Treatment Sequence in Forming WO3/SnO2/CuO Nanocomposites on the Photocatalytic Properties Illuminated by UV and Sunlight Irradiation. Journal of Electronic Materials, 2021, 50, 7150-7164.	1.0	0
115	Nanofitas de óxido de estanho: controle do estado de oxidação pela atmosfera de sÃntese. Ceramica, 2004, 50, 58-61.	0.3	0
116	Activated carbon from pumpkin seeds: Production by simultaneous carbonization activation for occupational respiratory protection. Ecletica Quimica, 2022, 47, 63-76.	0.2	0
117	Activated carbon from pumpkin seeds: Production by simultaneous carbonization activation for occupational respiratory protection. Ecletica Quimica, 2022, 47, 77-79.	0.2	0