Yian Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1924276/publications.pdf

Version: 2024-02-01

81743 88477 5,136 81 39 70 h-index citations g-index papers 90 90 90 3356 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Organocatalytic Asymmetric Epoxidation of Olefins by Chiral Ketones. Accounts of Chemical Research, 2004, 37, 488-496.	7.6	427
2	Recent advances in transition metal-catalyzed sp ³ Câ€"H amination adjacent to double bonds and carbonyl groups. Chemical Society Reviews, 2012, 41, 931-942.	18.7	422
3	Catalytic Diamination of Olefins via N–N Bond Activation. Accounts of Chemical Research, 2014, 47, 3665-3678.	7.6	260
4	A Facile Pd(0)-Catalyzed Regio- and Stereoselective Diamination of Conjugated Dienes and Trienes. Journal of the American Chemical Society, 2007, 129, 762-763.	6.6	219
5	Enantioselective Bromocyclization of Olefins Catalyzed by Chiral Phosphoric Acid. Organic Letters, 2011, 13, 6350-6353.	2.4	171
6	Highly Regio- and Enantioselective Monoepoxidation of Conjugated Dienes. Journal of Organic Chemistry, 1998, 63, 2948-2953.	1.7	151
7	Highly Enantioselective Epoxidation ofcis-Olefins by Chiral Dioxirane. Journal of the American Chemical Society, 2000, 122, 11551-11552.	6.6	139
8	A pH Study on the Chiral Ketone Catalyzed Asymmetric Epoxidation of Hydroxyalkenes. Journal of Organic Chemistry, 1998, 63, 3099-3104.	1.7	130
9	Palladium(0) atalyzed Heck Reaction/CH Activation/Amination Sequence with Diaziridinone: A Facile Approach to Indolines. Angewandte Chemie - International Edition, 2014, 53, 11280-11284.	7.2	128
10	Enantioselective Epoxidation of Terminal Olefins by Chiral Dioxirane. Organic Letters, 2001, 3, 1929-1931.	2.4	123
11	Organocatalytic Asymmetric Biomimetic Transamination: From α-Keto Esters to Optically Active α-Amino Acid Derivatives. Journal of the American Chemical Society, 2011, 133, 12914-12917.	6.6	123
12	Enantioselective Bromoaminocyclization of Allyl N-Tosylcarbamates Catalyzed by a Chiral Phosphine–Sc(OTf)3 Complex. Journal of the American Chemical Society, 2013, 135, 8101-8104.	6.6	117
13	Cu(I)-Catalyzed Diamination of Conjugated Dienes. Complementary Regioselectivity from Two Distinct Mechanistic Pathways Involving Cu(II) and Cu(III) Species. Journal of the American Chemical Society, 2011, 133, 20890-20900.	6.6	110
14	A New Type of Ketone Catalyst for Asymmetric Epoxidation. Journal of Organic Chemistry, 1997, 62, 8622-8623.	1.7	104
15	A Mild Cu(I)-Catalyzed Regioselective Diamination of Conjugated Dienes. Organic Letters, 2007, 9, 2589-2591.	2.4	102
16	A Class of C2 and Pseudo C2 Symmetric Ketone Catalysts for Asymmetric Epoxidation. Conformational Effect on Catalysis. Journal of Organic Chemistry, 1999, 64, 6443-6458.	1.7	96
17	Chiral Ketone-Catalyzed Asymmetric Epoxidation of 2,2-Disubstituted Vinylsilanes. Journal of Organic Chemistry, 1999, 64, 7675-7677.	1.7	94
18	An Efficient Ketone-Catalyzed Epoxidation Using Hydrogen Peroxide as Oxidant. Journal of Organic Chemistry, 2000, 65, 8807-8810.	1.7	94

#	Article	IF	CITATIONS
19	An Effective Pd-Catalyzed Regioselective Hydroformylation of Olefins with Formic Acid. Journal of the American Chemical Society, 2016, 138, 14864-14867.	6.6	93
20	Chiral Ketone Catalyzed Highly Chemo- and Enantioselective Epoxidation of Conjugated Enynes. Journal of Organic Chemistry, 1999, 64, 7646-7650.	1.7	85
21	Facile Cu(I)-Catalyzed Oxidative Coupling of Anilines to Azo Compounds and Hydrazines with Diaziridinone under Mild Conditions. Organic Letters, 2013, 15, 1942-1945.	2.4	85
22	Kinetic Resolution of Racemic Cyclic Olefins via Chiral Dioxirane. Journal of the American Chemical Society, 1999, 121, 7718-7719.	6.6	79
23	Electronic Probing of Ketone Catalysts for Asymmetric Epoxidation. Search for More Robust Catalysts. Organic Letters, 2001, 3, 715-718.	2.4	78
24	Structural Probing of Ketone Catalysts for Asymmetric Epoxidation. Journal of Organic Chemistry, 1998, 63, 8475-8485.	1.7	77
25	Enantioselective Synthesis and Stereoselective Rearrangements of Enol Ester Epoxides. Journal of Organic Chemistry, 2001, 66, 1818-1826.	1.7	76
26	Progress in asymmetric biomimetic transamination of carbonyl compounds. Chemical Society Reviews, 2015, 44, 1740-1748.	18.7	68
27	An efficient synthesis of optically active trifluoromethyl aldimines via asymmetric biomimetic transamination. Chemical Communications, 2013, 49, 1404.	2.2	66
28	A Palladium-Catalyzed Regioselective Hydroesterification of Alkenylphenols to Lactones with Phenyl Formate as CO Source. Organic Letters, 2014, 16, 186-189.	2.4	66
29	Facile Palladium-Catalyzed Hydrocarboxylation of Olefins without External CO Gas. Organic Letters, 2014, 16, 5960-5963.	2.4	59
30	A Ligand-Directed Catalytic Regioselective Hydrocarboxylation of Aryl Olefins with Pd and Formic Acid. Organic Letters, 2017, 19, 1748-1751.	2.4	58
31	Complete Conversion of Racemic Enol Ester Epoxides into Optically Active \hat{l}_{\pm} -Acyloxy Ketones. Journal of the American Chemical Society, 1999, 121, 11002-11003.	6.6	57
32	Highly Efficient Cu(I)-Catalyzed Oxidation of Alcohols to Ketones and Aldehydes with Diaziridinone. Organic Letters, 2013, 15, 992-995.	2.4	51
33	Chiral Phosphine Oxide–Sc(OTf) ₃ Complex Catalyzed Enantioselective Bromoaminocyclization of 2-Benzofuranylmethyl <i>N</i> -Tosylcarbamates. Approach to a Novel Class of Optically Active Spiro Compounds. Organic Letters, 2015, 17, 5752-5755.	2.4	49
34	An Efficient Asymmetric Biomimetic Transamination of α-Keto Esters to Chiral α-Amino Esters. Organic Letters, 2012, 14, 5270-5273.	2.4	48
35	Dual Mechanisms of Acid-Catalyzed Rearrangement of Enol Ester Epoxides: \hat{A} Enantioselective Formation of \hat{I} ±-Acyloxy Ketones. Journal of the American Chemical Society, 1999, 121, 4080-4081.	6.6	47
36	Asymmetric Epoxidation by Chiral Ketones Derived from Carbocyclic Analogues of Fructose. Journal of Organic Chemistry, 2001, 66, 521-530.	1.7	47

#	Article	IF	CITATIONS
37	Chiral phosphoric acid catalyzed enantioselective sulfamination of amino-alkenes. RSC Advances, 2013, 3, 4523.	1.7	46
38	Pd-Catalyzed Regiodivergent Hydroesterification of Aryl Olefins with Phenyl Formate. Organic Letters, 2015, 17, 3544-3547.	2.4	46
39	Catalytic Asymmetric Intermolecular Bromoesterification of Unfunctionalized Olefins. Organic Letters, 2014, 16, 3728-3731.	2.4	42
40	Palladium-Catalyzed Highly Regio- and Enantioselective Hydroesterification of Aryl Olefins with Phenyl Formate. Organic Letters, 2016, 18, 5456-5459.	2.4	42
41	An atom-economic approach to carboxylic acids via Pd-catalyzed direct addition of formic acid to olefins with acetic anhydride as a co-catalyst. Organic and Biomolecular Chemistry, 2015, 13, 8416-8419.	1.5	40
42	Pd(0)-Catalyzed Sequential C–N Bond Formation via Allylic and Aromatic C–H Amination of α-Methylstyrenes with Diaziridinone. Organic Letters, 2013, 15, 4210-4213.	2.4	39
43	Enantioselective 6-endo bromoaminocyclization of 2,4-dienyl N-tosylcarbamates catalyzed by a chiral phosphine oxide-Sc(OTf)3 complex. A dramatic additive effect. Organic and Biomolecular Chemistry, 2015, 13, 3566-3570.	1.5	39
44	Phosphine Oxide–Sc(OTf) ₃ Catalyzed Highly Regio- and Enantioselective Bromoaminocyclization of (<i>E</i>)-Cinnamyl Tosylcarbamates. An Approach to a Class of Synthetically Versatile Functionalized Molecules. Organic Letters, 2016, 18, 896-899.	2.4	37
45	Copper-Catalyzed Oxidative Homo- and Cross-Coupling of Grignard Reagents Using Diaziridinone. Organic Letters, 2014, 16, 6144-6147.	2.4	36
46	A facile copper(i)-catalyzed homocoupling of terminal alkynes to 1,3-diynes with diaziridinone under mild conditions. Organic and Biomolecular Chemistry, 2013, 11, 7451.	1.5	32
47	Palladium-catalyzed regio- and enantioselective hydroesterification of aryl olefins with CO gas. Organic Chemistry Frontiers, 2018, 5, 75-79.	2.3	32
48	A facile approach to \hat{l}^2 -amino acid derivatives via palladium-catalyzed hydrocarboxylation of enimides with formic acid. Organic and Biomolecular Chemistry, 2015, 13, 8429-8432.	1.5	31
49	An effective C–C double bond formation via Cu(I)-catalyzed dehydrogenation. Tetrahedron Letters, 2010, 51, 1822-1825.	0.7	29
50	Catalytic Asymmetric Bromination of Unfunctionalized Olefins with H ₂ O as a Nucleophile. Chemistry - A European Journal, 2015, 21, 11658-11663.	1.7	28
51	Enantioselective 6-exo-Bromoaminocyclization of Homoallylic N-Tosylcarbamates Catalyzed by a Novel Monophosphine-Sc(OTf)3 Complex. Organic Letters, 2015, 17, 3956-3959.	2.4	28
52	A palladium-catalyzed enantioselective hydroesterification of alkenylphenols with phenyl formate. A facile approach to optically active dihydrocoumarins. Organic and Biomolecular Chemistry, 2015, 13, 10341-10347.	1.5	27
53	Total Synthesis of the Proposed Structure of Marineosin A. Organic Letters, 2016, 18, 2028-2031.	2.4	25
54	Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine. Organic and Biomolecular Chemistry, 2012, 10, 8960.	1.5	24

#	Article	IF	CITATIONS
55	A Pd-Catalyzed Site-Controlled Isomerization of Terminal Olefins. Organic Letters, 2020, 22, 1868-1873.	2.4	21
56	Organocatalytic asymmetric biomimetic transamination of \hat{l}_{\pm} -keto acetals to chiral \hat{l}_{\pm} -amino acetals. RSC Advances, 2014, 4, 2389-2392.	1.7	20
57	Pd-Catalyzed Highly Chemo- and Regioselective Hydrocarboxylation of Terminal Alkyl Olefins with Formic Acid. Organic Letters, 2019, 21, 5967-5970.	2.4	20
58	Palladium-Catalyzed Sequential C–H Activation/Amination with Diaziridinone: An Approach to Indoles. Organic Letters, 2021, 23, 3646-3651.	2.4	19
59	Synthesis and Evaluation of 5,5′-Bitetralone-Based Chiral Phosphoric Acids. Organic Letters, 2015, 17, 4976-4979.	2.4	18
60	An easy access to carboxylic acids via Pd-catalyzed hydrocarboxylation of olefins with HCOOLi as a CO surrogate under mild conditions. Organic Chemistry Frontiers, 2016, 3, 1131-1136.	2.3	18
61	Domino C–N Bond Formation via a Palladacycle with Diaziridinone. An Approach to Indolo[3,2- <i>b</i> jindoles. Organic Letters, 2021, 23, 3237-3242.	2.4	18
62	Catalytic enantioselective bromohydroxylation of aryl olefins with flexible functionalities. Organic Chemistry Frontiers, 2017, 4, 1084-1090.	2.3	17
63	Organocatalytic synthesis of optically active \hat{l}^2 -branched $\hat{l}\pm$ -amino esters via asymmetric biomimetic transamination. Organic and Biomolecular Chemistry, 2014, 12, 5856.	1.5	15
64	A Facile Approach to Optically Active Hydroquinolineâ€2â€carboxylates by a Oneâ€Pot Asymmetric Michael/Transamination/Cyclization Process. Chemistry - A European Journal, 2016, 22, 2887-2891.	1.7	15
65	Pd-Catalyzed regioselective hydroesterification of 2-allylphenols to seven-membered lactones without external CO gas. Organic and Biomolecular Chemistry, 2016, 14, 3047-3052.	1.5	15
66	An effective route to \hat{l}^2 (sup>2-amino acid derivatives via Pd-catalyzed regioselective hydrocarboxylation of 1,2-disubstituted enimides. Organic Chemistry Frontiers, 2017, 4, 297-302.	2.3	12
67	Organocatalytic Oxidation. Ketone-Catalyzed Asymmetric Epoxidation of Olefins., 2005,, 51-82.		11
68	Pd-Catalyzed Regioselective Branched Hydrocarboxylation of Terminal Olefins with Formic Acid. Organic Letters, 2022, 24, 886-891.	2.4	11
69	Phosphine oxide-Sc(OTf)3 catalyzed enantioselective bromoaminocyclization of tri-substituted allyl N-tosylcarbamates. Science China Chemistry, 2018, 61, 656-659.	4.2	9
70	Pdâ€Catalyzed Regioselective Hydroesterification of Olefins with 2,2,2â€Trifluoroethyl Formate. European Journal of Organic Chemistry, 2020, 2020, 1078-1083.	1.2	8
71	Pd-Catalyzed Indole Synthesis via C–H Activation and Bisamination Sequence with Diaziridinone. Organic Letters, 2021, 23, 7561-7565.	2.4	8
72	An effective approach to aryl-substituted propanoic acids <i>via</i> the Pd-catalyzed hydrocarboxylation of stilbenes. Organic Chemistry Frontiers, 2018, 5, 561-565.	2.3	7

#	Article	IF	Citations
73	Pd-Catalyzed Oxidative Heck Reaction of Grignard Reagents with Diaziridinone as Oxidant. Organic Letters, 2019, 21, 5157-5161.	2.4	5
74	A Tandem Nucleophilic Aminopalladation and Carbene Insertion Sequence for Indole Fused Polycycles. Organic Letters, 2021, 23, 7118-7122.	2.4	5
75	A facile approach to ketones via Pd-catalyzed sequential carbonylation of olefins with formic acid. Organic Chemistry Frontiers, 2017, 4, 1074-1078.	2.3	4
76	A facile copper(<scp>i</scp>)-catalyzed homo-coupling of indanone derivatives using diaziridinone under mild conditions. Organic and Biomolecular Chemistry, 2019, 17, 6998-7001.	1.5	4
77	Catalytic enantioselective bromohydroxylation of cinnamyl alcohols. RSC Advances, 2021, 11, 13040-13046.	1.7	4
78	A Cu-Promoted C–N Coupling of Boron Esters and Diaziridinone: An Approach to Aryl Ureas. Organic Letters, 2021, 23, 8958-8962.	2.4	2
79	Studies on Pd-catalyzed asymmetric hydroesterification of enimides. A possible approach to optically active \hat{I}^2 -amino acid derivatives. New Journal of Chemistry, 2022, 46, 9507-9510.	1.4	2
80	Hydroxylation, Epoxidation and Related Reactions. , 2007, , 193-254.		0
81	Frontispiece: Catalytic Asymmetric Bromination of Unfunctionalized Olefins with H2O as a Nucleophile. Chemistry - A European Journal, 2015, 21, n/a-n/a.	1.7	0