Toru Hatsukade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1924218/publications.pdf Version: 2024-02-01

Τοριι Ηλτειικλοε

#	Article	IF	CITATIONS
1	Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces. Journal of the American Chemical Society, 2014, 136, 14107-14113.	13.7	1,253
2	Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catalysis, 2017, 7, 4822-4827.	11.2	637
3	Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nature Catalysis, 2018, 1, 764-771.	34.4	501
4	Insights into the electrocatalytic reduction of CO ₂ on metallic silver surfaces. Physical Chemistry Chemical Physics, 2014, 16, 13814-13819.	2.8	455
5	Engineering Cu surfaces for the electrocatalytic conversion of CO ₂ : Controlling selectivity toward oxygenates and hydrocarbons. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5918-5923.	7.1	311
6	Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. ACS Applied Materials & Interfaces, 2018, 10, 38892-38899.	8.0	193
7	Stabilizing Effect of a Hybrid Surface Coating on a Ni-Rich NCM Cathode Material in All-Solid-State Batteries. Chemistry of Materials, 2019, 31, 9664-9672.	6.7	174
8	Electrochemical CO ₂ reduction on Au surfaces: mechanistic aspects regarding the formation of major and minor products. Physical Chemistry Chemical Physics, 2017, 19, 15856-15863.	2.8	124
9	Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2015, 3, 20185-20194.	10.3	116
10	Lithium Lanthanum Titanium Oxides: A Fast Ionic Conductive Coating for Lithium-Ion Battery Cathodes. Chemistry of Materials, 2012, 24, 2744-2751.	6.7	115
11	Trends in the Catalytic Activity of Hydrogen Evolution during CO ₂ Electroreduction on Transition Metals. ACS Catalysis, 2018, 8, 3035-3040.	11.2	107
12	Gas Evolution in All-Solid-State Battery Cells. ACS Energy Letters, 2018, 3, 2539-2543.	17.4	100
13	The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-Ion Batteries. ACS Energy Letters, 2017, 2, 2228-2233.	17.4	97
14	A Preciousâ€Metalâ€Free Regenerative Fuel Cell for Storing Renewable Electricity. Advanced Energy Materials, 2013, 3, 1545-1550.	19.5	80
15	Gas Evolution in Lithium-Ion Batteries: Solid versus Liquid Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 20462-20468.	8.0	62
16	Carbon Dioxide Electroreduction using a Silver–Zinc Alloy. Energy Technology, 2017, 5, 955-961.	3.8	45
17	High-Throughput in Situ Pressure Analysis of Lithium-Ion Batteries. Analytical Chemistry, 2017, 89, 8122-8128.	6.5	42
18	Employing the Dynamics of the Electrochemical Interface in Aqueous Zincâ€Ion Battery Cathodes. Advanced Functional Materials, 2021, 31, 2102135.	14.9	34

#	Article	IF	CITATIONS
19	Detection of protons using the rotating ring disk electrode method during electrochemical oxidation of battery electrolytes. Electrochemistry Communications, 2020, 120, 106785.	4.7	1