
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1924141/publications.pdf Version: 2024-02-01

IAN DALLISEN

#	Article	IF	CITATIONS
1	Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408, 796-815.	13.7	8,336
2	Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 2000, 406, 959-964.	13.7	3,943
3	Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 2002, 419, 498-511.	13.7	3,881
4	Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science, 2004, 304, 66-74.	6.0	3,776
5	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	6.0	2,354
6	Major Facilitator Superfamily. Microbiology and Molecular Biology Reviews, 1998, 62, 1-34.	2.9	1,760
7	The genome sequence of the filamentous fungus Neurospora crassa. Nature, 2003, 422, 859-868.	13.7	1,528
8	The genome sequence of Schizosaccharomyces pombe. Nature, 2002, 415, 871-880.	13.7	1,508
9	Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae. Science, 2001, 293, 498-506.	6.0	1,281
10	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	13.7	1,272
11	Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology, 2002, 4, 799-808.	1.8	1,218
12	Genome sequencing and analysis of Aspergillus oryzae. Nature, 2005, 438, 1157-1161.	13.7	1,128
13	Genome Sequence of Aedes aegypti, a Major Arbovirus Vector. Science, 2007, 316, 1718-1723.	6.0	1,025
14	Proton-dependent multidrug efflux systems. Microbiological Reviews, 1996, 60, 575-608.	10.1	993
15	Insights on Evolution of Virulence and Resistance from the Complete Genome Analysis of an Early Methicillin-Resistant Staphylococcus aureus Strain and a Biofilm-Producing Methicillin-Resistant Staphylococcus epidermidis Strain. Journal of Bacteriology, 2005, 187, 2426-2438.	1.0	940
16	Role of Mobile DNA in the Evolution of Vancomycin-Resistant Enterococcus faecalis. Science, 2003, 299, 2071-2074.	6.0	849
17	Three Genomes from the Phylum <i>Acidobacteria</i> Provide Insight into the Lifestyles of These Microorganisms in Soils. Applied and Environmental Microbiology, 2009, 75, 2046-2056.	1.4	804
18	The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10181-10186.	3.3	785

#	Article	IF	CITATIONS
19	Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis. Nature Biotechnology, 2002, 20, 1118-1123.	9.4	771
20	The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature, 2003, 423, 81-86.	13.7	760
21	Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature, 2008, 455, 757-763.	13.7	756
22	The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58. Science, 2001, 294, 2317-2323.	6.0	741
23	Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis. Science, 2007, 315, 207-212.	6.0	731
24	Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements. PLoS Biology, 2004, 2, e69.	2.6	713
25	Genome of Geobacter sulfurreducens: Metal Reduction in Subsurface Environments. Science, 2003, 302, 1967-1969.	6.0	648
26	Proton-dependent multidrug efflux systems Microbiological Reviews, 1996, 60, 575-608.	10.1	644
27	Ecological Genomics of Marine Picocyanobacteria. Microbiology and Molecular Biology Reviews, 2009, 73, 249-299.	2.9	642
28	Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 2005, 23, 873-878.	9.4	615
29	The genome of a motile marine Synechococcus. Nature, 2003, 424, 1037-1042.	13.7	611
30	EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Research, 2004, 33, D334-D337.	6.5	597
31	Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes <i>Micromonas</i> . Science, 2009, 324, 268-272.	6.0	591
32	Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions. PLoS Genetics, 2012, 8, e1002784.	1.5	578
33	The Genome of M. acetivorans Reveals Extensive Metabolic and Physiological Diversity. Genome Research, 2002, 12, 532-542.	2.4	573
34	Lessons from the Genome Sequence of Neurospora crassa : Tracing the Path from Genomic Blueprint to Multicellular Organism. Microbiology and Molecular Biology Reviews, 2004, 68, 1-108.	2.9	572
35	The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7705-7710.	3.3	563
36	The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotechnology, 2004, 22, 554-559.	9.4	559

#	Article	IF	CITATIONS
37	Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Briefings in Bioinformatics, 2010, 11, 40-79.	3.2	551
38	The EcoCyc database: reflecting new knowledge about <i>Escherichia coli</i> K-12. Nucleic Acids Research, 2017, 45, D543-D550.	6.5	541
39	Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5455-5460.	3.3	506
40	EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Research, 2013, 41, D605-D612.	6.5	505
41	Complete genome sequence of Caulobacter crescentus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4136-4141.	3.3	489
42	Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Research, 2004, 32, 2386-2395.	6.5	460
43	Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12391-12396.	3.3	447
44	TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Research, 2001, 29, 41-43.	6.5	445
45	EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Research, 2011, 39, D583-D590.	6.5	444
46	Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature Biotechnology, 2011, 29, 922-927.	9.4	428
47	The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13148-13153.	3.3	422
48	Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature, 2004, 432, 910-913.	13.7	415
49	The EcoCyc Database. Nucleic Acids Research, 2002, 30, 56-58.	6.5	386
50	The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9509-9514.	3.3	362
51	Complete Genome Sequence of the Oral Pathogenic Bacterium Porphyromonas gingivalis Strain W83. Journal of Bacteriology, 2003, 185, 5591-5601.	1.0	362
52	TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Research, 2007, 35, D274-D279.	6.5	352
53	A Novel Family of Ubiquitous Heavy Metal Ion Transport Proteins. Journal of Membrane Biology, 1997, 156, 99-103.	1.0	347
54	Genome Sequence of Babesia bovis and Comparative Analysis of Apicomplexan Hemoprotozoa. PLoS Pathogens, 2007, 3, e148.	2.1	335

#	Article	IF	CITATIONS
55	Membrane transport proteins: implications of sequence comparisons. Current Opinion in Cell Biology, 1992, 4, 684-695.	2.6	333
56	The multidrug efflux protein NorM is a prototype of a new family of transporters. Molecular Microbiology, 1999, 31, 394-395.	1.2	329
57	Ecological Genomics of Marine Roseobacters. Applied and Environmental Microbiology, 2007, 73, 4559-4569.	1.4	327
58	A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. Journal of Bacteriology, 1994, 176, 3825-3831.	1.0	325
59	EcoCyc: A comprehensive view of Escherichia coli biology. Nucleic Acids Research, 2009, 37, D464-D470.	6.5	320
60	Genome Sequence of Theileria parva, a Bovine Pathogen That Transforms Lymphocytes. Science, 2005, 309, 134-137.	6.0	309
61	TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Research, 2017, 45, D320-D324.	6.5	306
62	The 3' conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrobial Agents and Chemotherapy, 1993, 37, 761-768.	1.4	295
63	Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities 1 1Edited by G. Von Heijne. Journal of Molecular Biology, 1998, 277, 573-592.	2.0	289
64	Phylogeny of multidrug transporters. Seminars in Cell and Developmental Biology, 2001, 12, 205-213.	2.3	288
65	Unravelling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biology, 2008, 9, R90.	13.9	288
66	Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3630-3635.	3.3	281
67	Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Research, 2006, 16, 1031-1040.	2.4	281
68	Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities. Molecules, 2015, 20, 5286-5298.	1.7	276
69	The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Molecular Microbiology, 1996, 19, 1167-1175.	1.2	275
70	Genomic Insights into Methanotrophy: The Complete Genome Sequence of Methylococcus capsulatus (Bath). PLoS Biology, 2004, 2, e303.	2.6	275
71	The major facilitator superfamily. Journal of Molecular Microbiology and Biotechnology, 1999, 1, 257-79.	1.0	267
72	Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Research, 2003, 31, 2134-2147.	6.5	266

#	Article	IF	CITATIONS
73	Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes 1 1Edited by G. von Heijne. Journal of Molecular Biology, 2000, 301, 75-100.	2.0	265
74	Genome Sequence of <i>Azotobacter vinelandii</i> , an Obligate Aerobe Specialized To Support Diverse Anaerobic Metabolic Processes. Journal of Bacteriology, 2009, 191, 4534-4545.	1.0	265
75	Niche of harmful alga <i>Aureococcus anophagefferens</i> revealed through ecogenomics. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4352-4357.	3.3	256
76	The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology (United Kingdom), 2000, 146, 1797-1814.	0.7	251
77	Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5646-5651.	3.3	251
78	Complete Genome Sequence of the Multiresistant Taxonomic Outlier Pseudomonas aeruginosa PA7. PLoS ONE, 2010, 5, e8842.	1.1	236
79	The EcoCyc and MetaCyc databases. Nucleic Acids Research, 2000, 28, 56-59.	6.5	234
80	Genome analysis of the proteorhodopsin-containing marine bacterium <i>Polaribacter</i> sp. MED152 (Flavobacteria). Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8724-8729.	3.3	231
81	Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13555-13559.	3.3	230
82	Genome of the Epsilonproteobacterial Chemolithoautotroph <i>Sulfurimonas denitrificans</i> . Applied and Environmental Microbiology, 2008, 74, 1145-1156.	1.4	228
83	A decade of advances in transposon-insertion sequencing. Nature Reviews Genetics, 2020, 21, 526-540.	7.7	228
84	Catabolite repression and inducer control in Gram-positive bacteria. Microbiology (United Kingdom), 1996, 142, 217-230.	0.7	222
85	Genome Sequences of Three <i>Agrobacterium</i> Biovars Help Elucidate the Evolution of Multichromosome Genomes in Bacteria. Journal of Bacteriology, 2009, 191, 2501-2511.	1.0	220
86	A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiology Letters, 1997, 156, 1-8.	0.7	215
87	Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions. BMC Genomics, 2011, 12, 126.	1.2	215
88	Complete Genome Sequence of the Broad-Host-Range Vibriophage KVP40: Comparative Genomics of a T4-Related Bacteriophage. Journal of Bacteriology, 2003, 185, 5220-5233.	1.0	214
89	Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB Journal, 1998, 12, 265-274.	0.2	210
90	Phylogenetic characterization of novel transport protein families revealed by genome analyses. BBA - Biomembranes, 1999, 1422, 1-56.	7.9	207

#	Article	IF	CITATIONS
91	Unified inventory of established and putative transporters encoded within the complete genome ofSaccharomyces cerevisiae. FEBS Letters, 1998, 430, 116-125.	1.3	203
92	Multidrug efflux pumps and resistance: regulation and evolution. Current Opinion in Microbiology, 2003, 6, 446-451.	2.3	191
93	Evolutionary origins of multidrug and drugâ€specific efflux pumps in bacteria. FASEB Journal, 1998, 12, 265-274.	0.2	184
94	TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Research, 2004, 32, 284D-288.	6.5	175
95	Genomeâ€based evolutionary history of <i>Pseudomonas</i> spp. Environmental Microbiology, 2018, 20, 2142-2159.	1.8	172
96	ToxoDB: accessing the Toxoplasma gondii genome. Nucleic Acids Research, 2003, 31, 234-236.	6.5	171
97	Multidimensional annotation of the Escherichia coli K-12 genome. Nucleic Acids Research, 2007, 35, 7577-7590.	6.5	168
98	Adherence and motility characteristics of clinical Acinetobacter baumannii isolates. FEMS Microbiology Letters, 2011, 323, 44-51.	0.7	168
99	Substrate specificity and energetics of antiseptic and disinfectant resistance inStaphylococcus aureus. FEMS Microbiology Letters, 1992, 95, 259-265.	0.7	164
100	QacR Is a Repressor Protein That Regulates Expression of theStaphylococcus aureus Multidrug Efflux Pump QacA. Journal of Biological Chemistry, 1998, 273, 18665-18673.	1.6	163
101	New Clycoprotein-Associated Amino Acid Transporters. Journal of Membrane Biology, 1999, 172, 181-192.	1.0	161
102	Genome Sequences of the Biotechnologically Important Bacillus megaterium Strains QM B1551 and DSM319. Journal of Bacteriology, 2011, 193, 4199-4213.	1.0	155
103	Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology (United Kingdom), 1997, 143, 2685-2699.	0.7	152
104	Community-acquired <i>Acinetobacter baumannii</i> : clinical characteristics, epidemiology and pathogenesis. Expert Review of Anti-Infective Therapy, 2015, 13, 567-573.	2.0	150
105	Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics, 2014, 15, 1020.	1.2	149
106	Multidrug resistance to antiseptics and disinfectants in coagulase-negative staphylococci. Journal of Medical Microbiology, 1994, 40, 214-220.	0.7	147
107	Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii. Nucleic Acids Research, 2005, 33, 2980-2992.	6.5	147
108	The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS Biology, 2006, 4, e383.	2.6	144

#	Article	IF	CITATIONS
109	Comparative Analyses of Fundamental Differences in Membrane Transport Capabilities in Prokaryotes and Eukaryotes. PLoS Computational Biology, 2005, 1, e27.	1.5	141
110	The ergosterol biosynthesis pathway, transporter genes, and azole resistance in <i>Aspergillus fumigatus</i> . Medical Mycology, 2005, 43, 313-319.	0.3	140
111	Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20254-20259.	3.3	138
112	Homologs of the Acinetobacter baumannii Acel Transporter Represent a New Family of Bacterial Multidrug Efflux Systems. MBio, 2015, 6, .	1.8	138
113	Multidrug-Resistant Transport Proteins in Yeast: Complete Inventory and Phylogenetic Characterization of Yeast Open Reading Frames within the Major Facilitator Superfamily. , 1997, 13, 43-54.		137
114	Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enterica Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials. Antimicrobial Agents and Chemotherapy, 2007, 51, 535-542.	1.4	137
115	Inactivation of the GacA response regulator in <i>Pseudomonas fluorescens</i> Pfâ€5 has farâ€reaching transcriptomic consequences. Environmental Microbiology, 2010, 12, 899-915.	1.8	137
116	Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes — an analysis. Gene, 1993, 124, 1-11.	1.0	133
117	The POT family of transport proteins. Trends in Biochemical Sciences, 1994, 19, 404.	3.7	131
118	Microarray analysis of phosphate regulation in the marine cyanobacterium <i>Synechococcus</i> sp. WH8102. ISME Journal, 2009, 3, 835-849.	4.4	131
119	A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiology Letters, 2006, 156, 1-8.	0.7	125
120	Molecular characterization of the staphylococcal multidrug resistance export protein QacC. Journal of Bacteriology, 1995, 177, 2827-2833.	1.0	124
121	The EcoCyc Database in 2021. Frontiers in Microbiology, 2021, 12, 711077.	1.5	122
122	Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic. ISME Journal, 2012, 6, 1403-1414.	4.4	120
123	RamA Confers Multidrug Resistance in <i>Salmonella enterica</i> via Increased Expression of <i>acrB</i> , Which Is Inhibited by Chlorpromazine. Antimicrobial Agents and Chemotherapy, 2008, 52, 3604-3611.	1.4	118
124	The Genomic Sequence of Pseudomonas fluorescens Pf-5: Insights Into Biological Control. Phytopathology, 2007, 97, 233-238.	1.1	115
125	Yeast's balancing act between ethanol and glycerol production in lowâ€alcohol wines. Microbial Biotechnology, 2017, 10, 264-278.	2.0	113
126	Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10514-10519.	3.3	112

#	Article	IF	CITATIONS
127	Genome Degradation in Brucella ovis Corresponds with Narrowing of Its Host Range and Tissue Tropism. PLoS ONE, 2009, 4, e5519.	1.1	110
128	Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiology Letters, 1992, 74, 259-65.	0.7	110
129	The Value of Complete Microbial Genome Sequencing (You Get What You Pay For). Journal of Bacteriology, 2002, 184, 6403-6405.	1.0	101
130	The EcoCyc Database. EcoSal Plus, 2014, 6, .	2.1	101
131	Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future. Marine Drugs, 2016, 14, 97.	2.2	101
132	H-NS Plays a Role in Expression of Acinetobacter baumannii Virulence Features. Infection and Immunity, 2013, 81, 2574-2583.	1.0	100
133	The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology, 2009, 46, S2-S13.	0.9	99
134	Blueprints for Biosensors: Design, Limitations, and Applications. Genes, 2018, 9, 375.	1.0	99
135	Enzyme INtr from Escherichia coli. Journal of Biological Chemistry, 1999, 274, 26185-26191.	1.6	97
136	Rapid microevolution of biofilm cells in response to antibiotics. Npj Biofilms and Microbiomes, 2019, 5, 34.	2.9	96
137	Bioenergetics of the Staphylococcal Multidrug Export Protein QacA. Journal of Biological Chemistry, 1999, 274, 3541-3548.	1.6	95
138	A Broad-Specificity Multidrug Efflux Pump Requiring a Pair of Homologous SMR-Type Proteins. Journal of Bacteriology, 2000, 182, 2311-2313.	1.0	94
139	Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. Npj Biofilms and Microbiomes, 2021, 7, 80.	2.9	94
140	Status of genome projects for nonpathogenic bacteria and archaea. Nature Biotechnology, 2000, 18, 1049-1054.	9.4	93
141	The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii. PLoS ONE, 2013, 8, e58628.	1.1	93
142	Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiology, 2009, 9, 8.	1.3	91
143	Synthetic Evolution of Metabolic Productivity Using Biosensors. Trends in Biotechnology, 2016, 34, 371-381.	4.9	90
144	Microbial Drug Efflux Proteins of the Major Facilitator Superfamily. Current Drug Targets, 2006, 7, 793-811.	1.0	87

#	Article	IF	CITATIONS
145	Exopolysaccharide-associated protein sorting in environmental organisms: the PEP-CTERM/EpsH system. Application of a novel phylogenetic profiling heuristic. BMC Biology, 2006, 4, 29.	1.7	86
146	Coastal <i>Synechococcus</i> metagenome reveals major roles for horizontal gene transfer and plasmids in population diversity. Environmental Microbiology, 2009, 11, 349-359.	1.8	86
147	Microbiology of the Anthropocene. Anthropocene, 2014, 5, 1-8.	1.6	83
148	pEl1573 Carrying <i>bla</i> _{IMP-4} , from Sydney, Australia, Is Closely Related to Other IncL/M Plasmids. Antimicrobial Agents and Chemotherapy, 2012, 56, 6029-6032.	1.4	82
149	Sequences of Two Related Multiple Antibiotic Resistance Virulence Plasmids Sharing a Unique IS26-Related Molecular Signature Isolated from Different Escherichia coli Pathotypes from Different Hosts. PLoS ONE, 2013, 8, e78862.	1.1	80
150	Physiological Functions of Bacterial "Multidrug―Efflux Pumps. Chemical Reviews, 2021, 121, 5417-5478.	23.0	78
151	A novel family of genomic resistance islands, AbGRI2, contributing to aminoglycoside resistance in Acinetobacter baumannii isolates belonging to global clone 2. Journal of Antimicrobial Chemotherapy, 2013, 68, 554-557.	1.3	77
152	Pacing across the membrane: the novel PACE family of efflux pumps is widespread in Gram-negative pathogens. Research in Microbiology, 2018, 169, 450-454.	1.0	77
153	The EcoCyc Database. EcoSal Plus, 2018, 8, .	2.1	75
154	Genome of alkaliphilic <i>Bacillus pseudofirmus</i> OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environmental Microbiology, 2011, 13, 3289-3309.	1.8	73
155	Long-Term Irrigation Affects the Dynamics and Activity of the Wheat Rhizosphere Microbiome. Frontiers in Plant Science, 2018, 9, 345.	1.7	73
156	Genomic analyses of Clostridium perfringens isolates from five toxinotypes. Research in Microbiology, 2015, 166, 255-263.	1.0	71
157	Bacterial Subfamily of LuxR Regulators That Respond to Plant Compounds. Applied and Environmental Microbiology, 2011, 77, 4579-4588.	1.4	68
158	Large-Scale Comparative Genomic Analyses of Cytoplasmic Membrane Transport Systems in Prokaryotes. Journal of Molecular Microbiology and Biotechnology, 2007, 12, 165-179.	1.0	67
159	Genome sequence and identification of candidate vaccine antigens from the animal pathogen Dichelobacter nodosus. Nature Biotechnology, 2007, 25, 569-575.	9.4	66
160	Coastal Strains of Marine <i>Synechococcus</i> Species Exhibit Increased Tolerance to Copper Shock and a Distinctive Transcriptional Response Relative to Those of Open-Ocean Strains. Applied and Environmental Microbiology, 2009, 75, 5047-5057.	1.4	65
161	Computational inference and experimental validation of the nitrogen assimilation regulatory network in cyanobacterium Synechococcus sp. WH 8102. Nucleic Acids Research, 2006, 34, 1050-1065.	6.5	64
162	Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nature Communications, 2020, 11, 5564.	5.8	64

#	Article	IF	CITATIONS
163	Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME Journal, 2013, 7, 1227-1236.	4.4	63
164	The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5. PLoS ONE, 2012, 7, e39139.	1.1	62
165	Comparative genomics of microbial drug efflux systems. Journal of Molecular Microbiology and Biotechnology, 2001, 3, 145-50.	1.0	62
166	Structural and Functional Analysis of the Type III Secretion System from <i>Pseudomonas fluorescens</i> Q8r1-96. Journal of Bacteriology, 2011, 193, 177-189.	1.0	61
167	Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics. Genes, 2015, 6, 841-857.	1.0	61
168	Secondary Effects of Antibiotics on Microbial Biofilms. Frontiers in Microbiology, 2020, 11, 2109.	1.5	61
169	A synthesis of bacterial and archaeal phenotypic trait data. Scientific Data, 2020, 7, 170.	2.4	59
170	Characterization of the Earliest Known Staphylococcus aureus Plasmid Encoding a Multidrug Efflux System. Journal of Bacteriology, 1998, 180, 3477-3479.	1.0	59
171	Analysis of a transfer region from the staphylococcal conjugative plasmid pSK41. Gene, 1993, 136, 13-25.	1.0	58
172	Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes in Rhizosphere Pseudomonas. Frontiers in Microbiology, 2021, 12, 651282.	1.5	58
173	Comparative Genomic Evidence for a Close Relationship between the Dimorphic Prosthecate Bacteria Hyphomonas neptunium and Caulobacter crescentus. Journal of Bacteriology, 2006, 188, 6841-6850.	1.0	57
174	Insights on virulence from the complete genome of Staphylococcus capitis. Frontiers in Microbiology, 2015, 6, 980.	1.5	56
175	Zinc stress induces copper depletion in Acinetobacter baumannii. BMC Microbiology, 2017, 17, 59.	1.3	55
176	One-Step Protein Conjugation to Upconversion Nanoparticles. Analytical Chemistry, 2015, 87, 10406-10413.	3.2	54
177	IS257-mediated cointegration in the evolution of a family of staphylococcal trimethoprim resistance plasmids. Journal of Bacteriology, 1996, 178, 6070-6073.	1.0	53
178	The effect of zinc limitation on the transcriptome of <i><scp>P</scp>seudomonas protegens</i> â€ <scp>Pf</scp> â€5. Environmental Microbiology, 2013, 15, 702-715.	1.8	53
179	Characterization of Glucose-Specific Catabolite Repression-Resistant Mutants of Bacillus subtilis : Identification of a Novel Hexose:H + Symporter. Journal of Bacteriology, 1998, 180, 498-504.	1.0	53
180	Pseudomonas aeruginosa inhibits the growth of Scedosporium aurantiacum, an opportunistic fungal pathogen isolated from the lungs of cystic fibrosis patients. Frontiers in Microbiology, 2015, 6, 866.	1.5	52

#	Article	IF	CITATIONS
181	Common inheritance of chromosome Ia associated with clonal expansion of Toxoplasma gondii. Genome Research, 2006, 16, 1119-1125.	2.4	51
182	Characterisation of sin, a potential recombinase-encoding gene from Staphylococcus aureus. Gene, 1994, 141, 109-114.	1.0	50
183	Genomics and the evolution of antibiotic resistance. Annals of the New York Academy of Sciences, 2017, 1388, 92-107.	1.8	50
184	High-Throughput Phenotypic Characterization of Pseudomonas aeruginosa Membrane Transport Genes. PLoS Genetics, 2008, 4, e1000211.	1.5	49
185	The Coal Seam Microbiome (CSMB) reference set, a lingua franca for the microbial coal-to-methane community. International Journal of Coal Geology, 2018, 186, 41-50.	1.9	46
186	Multidrug Resistance Plasmid pSK108 from Coagulase-Negative Staphylococci; Relationships to Staphylococcus aureus qacC Plasmids. Plasmid, 1995, 34, 62-67.	0.4	45
187	Analysis of two marine metagenomes reveals the diversity of plasmids in oceanic environments. Environmental Microbiology, 2012, 14, 453-466.	1.8	45
188	Maintenance of essential amino acid synthesis pathways in the <i>Blattabacterium cuenoti</i> symbiont of a wood-feeding cockroach. Biology Letters, 2013, 9, 20121153.	1.0	45
189	Screening of candidate substrates and coupling ions of transporters by thermostability shift assays. ELife, 2018, 7, .	2.8	45
190	Identification of Novel <i>Acinetobacter baumannii</i> Host Fatty Acid Stress Adaptation Strategies. MBio, 2019, 10, .	1.8	43
191	Cell size, genome size, and maximum growth rate are nearâ€independent dimensions of ecological variation across bacteria and archaea. Ecology and Evolution, 2021, 11, 3956-3976.	0.8	43
192	PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine <i>Synechococcus</i> . ISME Journal, 2010, 4, 908-921.	4.4	42
193	A genome-scale metabolic flux model of Escherichia coli K–12 derived from the EcoCyc database. BMC Systems Biology, 2014, 8, 79.	3.0	42
194	Wholeâ€genome microarray analyses of <i>Synechococcus</i> – <i>Vibrio</i> interactions. Environmental Microbiology, 2009, 11, 2698-2709.	1.8	41
195	Genes expressed by the biological control bacterium <i><scp>P</scp>seudomonas protegens</i> â€ <scp>Pf</scp> â€5 on seed surfaces under the control of the global regulators <scp>GacA</scp> and <scp>RpoS</scp> . Environmental Microbiology, 2013, 15, 716-735.	1.8	41
196	The Common Oceanographer: Crowdsourcing the Collection of Oceanographic Data. PLoS Biology, 2014, 12, e1001947.	2.6	41
197	Systematic, continental scale temporal monitoring of marine pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative. Scientific Data, 2018, 5, 180130.	2.4	41
198	Sugar metabolism by Brucellae. Veterinary Microbiology, 2002, 90, 249-261.	0.8	40

#	Article	IF	CITATIONS
199	Complete Sequence of pJIE143, apir-Type Plasmid Carrying ISEcp1-blaCTX-M-15from an Escherichia coli ST131 Isolate. Antimicrobial Agents and Chemotherapy, 2011, 55, 5933-5935.	1.4	38
200	Effects of uranium concentration on microbial community structure and functional potential. Environmental Microbiology, 2017, 19, 3323-3341.	1.8	38
201	Global Gene Expression Profile of Acinetobacter baumannii During Bacteremia. Journal of Infectious Diseases, 2017, 215, S52-S57.	1.9	38
202	Microbial communities are sensitive indicators for freshwater sediment copper contamination. Environmental Pollution, 2019, 247, 1028-1038.	3.7	38
203	Genetically and Phenotypically Distinct Pseudomonas aeruginosa Cystic Fibrosis Isolates Share a Core Proteomic Signature. PLoS ONE, 2015, 10, e0138527.	1.1	37
204	The Escherichia coli ABC transporters: an update. Molecular Microbiology, 1999, 32, 887-889.	1.2	36
205	Reciprocal Regulation of Pyoluteorin Production with Membrane Transporter Gene Expression in Pseudomonas fluorescens Pf-5. Applied and Environmental Microbiology, 2005, 71, 6900-6909.	1.4	36
206	Annotation-based inference of transporter function. Bioinformatics, 2008, 24, i259-i267.	1.8	36
207	Effects of low temperature on tropical and temperate isolates of marine <i>Synechococcus</i> . ISME Journal, 2016, 10, 1252-1263.	4.4	36
208	An ace up their sleeve: a transcriptomic approach exposes the Acel efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens. Frontiers in Microbiology, 2015, 6, 333.	1.5	35
209	The Role of the CopA Copper Efflux System in Acinetobacter baumannii Virulence. International Journal of Molecular Sciences, 2019, 20, 575.	1.8	35
210	Biolog Phenotype MicroArrays for Phenotypic Characterization of Microbial Cells. Methods in Molecular Biology, 2014, 1096, 123-130.	0.4	35
211	Roles of DHA2 Family Transporters in Drug Resistance and Iron Homeostasis in <i>Acinetobacter</i> spp Journal of Molecular Microbiology and Biotechnology, 2011, 20, 116-124.	1.0	34
212	A novel family of integrases associated with prophages and genomic islands integrated within the tRNA-dihydrouridine synthase A (dusA) gene. Nucleic Acids Research, 2015, 43, 4547-4557.	6.5	34
213	Characterization and Vaccine Potential of Membrane Vesicles Produced by Francisella noatunensis subsp. orientalis in an Adult Zebrafish Model. Vaccine Journal, 2017, 24, .	3.2	34
214	Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast. Synthetic Biology, 2017, 2, ysw002.	1.2	32
215	Succession Patterns and Physical Niche Partitioning in Microbial Communities from Subsurface Coal Seams. IScience, 2019, 12, 152-167.	1.9	32
216	The <scp>R</scp> sm regulon of plant growthâ€promoting <scp><i>Pseudomonas fluorescens</i>â€<scp>SS</scp>101: role of small <scp>RNA</scp>s in regulation of lipopeptide biosynthesis. Microbial Biotechnology, 2015, 8, 296-310.</scp>	2.0	31

#	Article	IF	CITATIONS
217	Characterizing the Mechanism of Action of an Ancient Antimicrobial, Manuka Honey, against Pseudomonas aeruginosa Using Modern Transcriptomics. MSystems, 2020, 5, .	1.7	30
218	Who eats what? Unravelling microbial conversion of coal to methane. FEMS Microbiology Ecology, 2019, 95, .	1.3	29
219	Benzalkonium chloride antagonises aminoglycoside antibiotics and promotes evolution of resistance. EBioMedicine, 2021, 73, 103653.	2.7	29
220	Regulation of Type IV Fimbrial Biogenesis in Dichelobacter nodosus. Journal of Bacteriology, 2006, 188, 4801-4811.	1.0	28
221	Spatially extensive microbial biogeography of the Indian Ocean provides insights into the unique community structure of a pristine coral atoll. Scientific Reports, 2015, 5, 15383.	1.6	28
222	Pseudomonas aeruginosa Cell Membrane Protein Expression from Phenotypically Diverse Cystic Fibrosis Isolates Demonstrates Host-Specific Adaptations. Journal of Proteome Research, 2016, 15, 2152-2163.	1.8	28
223	pJIE137 Carrying <i>bla</i> _{CTX-M-62} Is Closely Related to p271A Carrying <i>bla</i> _{NDM-1} . Antimicrobial Agents and Chemotherapy, 2012, 56, 2166-2168.	1.4	27
224	Revealing colonisation and biofilm formation of an adherent coal seam associated microbial community on a coal surface. International Journal of Coal Geology, 2016, 160-161, 42-50.	1.9	27
225	Fluorescence-Based Flow Sorting in Parallel with Transposon Insertion Site Sequencing Identifies Multidrug Efflux Systems in Acinetobacter baumannii. MBio, 2016, 7, .	1.8	27
226	Rapid multiplexed phenotypic screening identifies drug resistance functions for three novel efflux pumps in <i>Acinetobacter baumannii</i> . Journal of Antimicrobial Chemotherapy, 2016, 71, 1223-1232.	1.3	26
227	Diverse fungal lineages in subtropical ponds are altered by sediment-bound copper. Fungal Ecology, 2018, 34, 28-42.	0.7	26
228	Impact of DNA damaging agents on genome-wide transcriptional profiles in two marine Synechococcus species. Frontiers in Microbiology, 2013, 4, 232.	1.5	25
229	Regulation of the acel multidrug efflux pump gene in Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2018, 73, 1492-1500.	1.3	25
230	Fiber Supplements Derived From Sugarcane Stem, Wheat Dextrin and Psyllium Husk Have Different In Vitro Effects on the Human Gut Microbiota. Frontiers in Microbiology, 2018, 9, 1618.	1.5	25
231	Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnology for Biofuels, 2019, 12, 97.	6.2	25
232	Changes in dietary fiber intake in mice reveal associations between colonic mucin <i>O</i> -glycosylation and specific gut bacteria. Gut Microbes, 2020, 12, 1802209.	4.3	25
233	Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the FOF1-ATPases of bacteria, chloroplasts and mitochondria. Microbiology (United Kingdom), 1996, 142, 17-32.	0.7	25
234	Application of Exonuclease III-Aided Target Recycling in Flow Cytometry: DNA Detection Sensitivity Enhanced by Orders of Magnitude. Analytical Chemistry, 2013, 85, 8240-8245.	3.2	24

#	Article	IF	CITATIONS
235	Functional genomic studies of dihydroxyacetone utilization in Escherichia coli. Microbiology (United) Tj ETQq1	1 0.784314 0.7	rgBT /Overic
236	Genetic Identification of a High-Affinity Ni Transporter and the Transcriptional Response to Ni Deprivation in Synechococcus sp. Strain WH8102. Applied and Environmental Microbiology, 2012, 78, 7822-7832.	1.4	23
237	Effect of Tannic Acid on the Transcriptome of the Soil Bacterium Pseudomonas protegens Pf-5. Applied and Environmental Microbiology, 2013, 79, 3141-3145.	1.4	23
238	Dead End Metabolites - Defining the Known Unknowns of the E. coli Metabolic Network. PLoS ONE, 2013, 8, e75210.	1.1	23
239	Phenotypic Profiling of Scedosporium aurantiacum, an Opportunistic Pathogen Colonizing Human Lungs. PLoS ONE, 2015, 10, e0122354.	1.1	22
240	Comparative Analysis of Membrane Vesicles from Three Piscirickettsia salmonis Isolates Reveals Differences in Vesicle Characteristics. PLoS ONE, 2016, 11, e0165099.	1.1	22
241	Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome. Nature Communications, 2022, 13, .	5.8	22
242	Draft Genome of Australian Environmental Strain WM 09.24 of the Opportunistic Human Pathogen Scedosporium aurantiacum. Genome Announcements, 2015, 3, .	0.8	21
243	Dual Transcriptomics of Host-Pathogen Interaction of Cystic Fibrosis Isolate Pseudomonas aeruginosa PASS1 With Zebrafish. Frontiers in Cellular and Infection Microbiology, 2018, 8, 406.	1.8	21
244	Short-chain diamines are the physiological substrates of PACE family efflux pumps. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18015-18020.	3.3	21
245	The Role of Zinc Efflux during Acinetobacter baumannii Infection. ACS Infectious Diseases, 2020, 6, 150-158.	1.8	21
246	Trait dimensions in bacteria and archaea compared to vascular plants. Ecology Letters, 2021, 24, 1487-1504.	3.0	21
247	SecDF as Part of the Sec-Translocase Facilitates Efficient Secretion of Bacillus cereus Toxins and Cell Wall-Associated Proteins. PLoS ONE, 2014, 9, e103326.	1.1	21
248	Genomic Analysis Reveals Multiple [FeFe] Hydrogenases and Hydrogen Sensors Encoded by Treponemes from the H2-Rich Termite Gut. Microbial Ecology, 2012, 63, 282-294.	1.4	20
249	Single-Step Selection of Drug Resistant Acinetobacter baylyi ADP1 Mutants Reveals a Functional Redundancy in the Recruitment of Multidrug Efflux Systems. PLoS ONE, 2013, 8, e56090.	1.1	20
250	Regulation of carbon utilization by sulfur availability in Escherichia coli and Salmonella typhimurium. Microbiology (United Kingdom), 2002, 148, 123-131.	0.7	20
251	Genomic and phenotypic insights point to diverse ecological strategies by facultative anaerobes obtained from subsurface coal seams. Scientific Reports, 2019, 9, 16186.	1.6	19
252	The Sensory Significance of Apocarotenoids in Wine: Importance of Carotenoid Cleavage Dioxygenase 1 (CCD1) in the Production of Î ² -Ionone. Molecules, 2020, 25, 2779.	1.7	19

#	Article	IF	CITATIONS
253	Aerobic bacteria and archaea tend to have larger and more versatile genomes. Oikos, 2021, 130, 501-511.	1.2	19
254	The DAG family of glycosyl hydrolases combines two previously identified protein families. Biochemical Journal, 1995, 311, 349-350.	1.7	18
255	Identification of a Dichelobacter nodosus Ferric Uptake Regulator and Determination of Its Regulatory Targets. Journal of Bacteriology, 2005, 187, 366-375.	1.0	18
256	Carbon metabolism and its regulation in Streptomyces and other high GC Gram-positive bacteria. Research in Microbiology, 1996, 147, 535-541.	1.0	17
257	Insights from the Genomes of Microbes Thriving in Uranium-Enriched Sediments. Microbial Ecology, 2018, 75, 970-984.	1.4	17
258	The Acinetobacter baumannii disinfectant resistance protein, AmvA, is a spermidine and spermine efflux pump. Communications Biology, 2021, 4, 1114.	2.0	17
259	Genome Sequence of Vibrio rotiferianus Strain DAT722. Journal of Bacteriology, 2011, 193, 3381-3382.	1.0	16
260	Resolving Low-Expression Cell Surface Antigens by Time-Gated Orthogonal Scanning Automated Microscopy. Analytical Chemistry, 2012, 84, 9674-9678.	3.2	16
261	Proteomics of hosts and pathogens in cystic fibrosis. Proteomics - Clinical Applications, 2015, 9, 134-146.	0.8	16
262	Benchmarking two Saccharomyces cerevisiae laboratory strains for growth and transcriptional response to methanol. Synthetic and Systems Biotechnology, 2019, 4, 180-188.	1.8	16
263	Application of Transposon Insertion Sequencing to Agricultural Science. Frontiers in Plant Science, 2020, 11, 291.	1.7	16
264	Microdroplet enabled cultivation of single yeast cells correlates with bulk growth and reveals subpopulation phenomena. Biotechnology and Bioengineering, 2021, 118, 647-658.	1.7	16
265	A Bacterial Model System for Understanding Multi-Drug Resistance. Microbial Drug Resistance, 1997, 3, 289-295.	0.9	15
266	Selection in Coastal Synechococcus (Cyanobacteria) Populations Evaluated from Environmental Metagenomes. PLoS ONE, 2011, 6, e24249.	1.1	15
267	Computational prediction of the osmoregulation network in Synechococcus sp. WH8102. BMC Genomics, 2010, 11, 291.	1.2	14
268	Stress effects caused by the expression of a mutant cellobiohydrolase I and proteasome inhibition in Trichoderma reesei Rut-C30. New Biotechnology, 2013, 30, 183-191.	2.4	14
269	Physical enrichment of transposon mutants from saturation mutant libraries using the TraDISort approach. Mobile Genetic Elements, 2017, 7, 1-7.	1.8	14
270	The Membrane Composition Defines the Spatial Organization and Function of a Major Acinetobacter baumannii Drug Efflux System. MBio, 2021, 12, e0107021.	1.8	14

#	Article	IF	CITATIONS
271	Paralogous genes encoding transport proteins in microbial genomes. Research in Microbiology, 1999, 150, 689-699.	1.0	13
272	Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module. PLoS ONE, 2011, 6, e16934.	1.1	13
273	Adherent microbes in coal seam environments prefer mineral-rich and crack-associated microhabitats. International Journal of Coal Geology, 2021, 234, 103652.	1.9	13
274	pA506, a Conjugative Plasmid of the Plant Epiphyte Pseudomonas fluorescens A506. Applied and Environmental Microbiology, 2013, 79, 5272-5282.	1.4	12
275	Stormwater influences phytoplankton assemblages within the diverse, but impacted Sydney Harbour estuary. PLoS ONE, 2018, 13, e0209857.	1.1	12
276	Yeast Synthetic Minimal Biosensors for Evaluating Protein Production. ACS Synthetic Biology, 2021, 10, 1640-1650.	1.9	12
277	Catabolism of Nucleic Acids by a Cystic Fibrosis Pseudomonas aeruginosa Isolate: An Adaptive Pathway to Cystic Fibrosis Sputum Environment. Frontiers in Microbiology, 2019, 10, 1199.	1.5	11
278	Interactions of an Emerging Fungal Pathogen Scedosporium aurantiacum with Human Lung Epithelial Cells. Scientific Reports, 2019, 9, 5035.	1.6	11
279	Seeding the idea of encapsulating a representative synthetic metagenome in a single yeast cell. Nature Communications, 2021, 12, 1599.	5.8	11
280	Elucidating Essential Genes in Plant-Associated Pseudomonas protegens Pf-5 Using Transposon Insertion Sequencing. Journal of Bacteriology, 2021, 203, .	1.0	11
281	The putative drug efflux systems of the Bacillus cereus group. PLoS ONE, 2017, 12, e0176188.	1.1	11
282	Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology, 2003, 5, 630-630.	1.8	10
283	The MFS Efflux Proteins of Gramâ€Positive and Gramâ€Negative Bacteria. Advances in Enzymology and Related Areas of Molecular Biology, 2011, 77, 147-166.	1.3	10
284	Bacillus cereus efflux protein BC3310 – a multidrug transporter of the unknown major facilitator family, UMF-2. Frontiers in Microbiology, 2015, 6, 1063.	1.5	10
285	QTL analysis of natural <i>Saccharomyces cerevisiae</i> isolates reveals unique alleles involved in lignocellulosic inhibitor tolerance. FEMS Yeast Research, 2019, 19, .	1.1	10
286	The Transcriptomic Signature of Tigecycline in Acinetobacter baumannii. Frontiers in Microbiology, 2020, 11, 565438.	1.5	10
287	Unravelling Stratified Microbial Assemblages in Australia's Only Deep Anchialine System, The Bundera Sinkhole. Frontiers in Marine Science, 0, 9, .	1.2	10
288	Development of a High-Throughput Cloning Strategy for Characterization of Acinetobacter baumannii Drug Transporter Proteins. Journal of Molecular Microbiology and Biotechnology, 2011, 20, 211-219.	1.0	9

#	Article	IF	CITATIONS
289	Addition of Escherichia coli K-12 Growth Observation and Gene Essentiality Data to the EcoCyc Database. Journal of Bacteriology, 2014, 196, 982-988.	1.0	9
290	Subsurface Stappia: Success Through Defence, Specialisation and Putative Pressure-Dependent Carbon Fixation. Microbial Ecology, 2020, 80, 34-46.	1.4	9
291	<i>Acinetobacter baumannii</i> Fatty Acid Desaturases Facilitate Survival in Distinct Environments. ACS Infectious Diseases, 2021, 7, 2221-2228.	1.8	9
292	The Molecular Basis of Acinetobacter baumannii Cadmium Toxicity and Resistance. Applied and Environmental Microbiology, 2021, 87, e0171821.	1.4	9
293	Strategic traits of bacteria and archaea vary widely within substrate-use groups. FEMS Microbiology Ecology, 2021, 97, .	1.3	8
294	Overall Transport Capabilities of Bacillus subtilis. , 2014, , 111-128.		7
295	A Transcriptomic Approach to Identify Novel Drug Efflux Pumps in Bacteria. Methods in Molecular Biology, 2018, 1700, 221-235.	0.4	7
296	Aromatic compound-degrading taxa in an anoxic coal seam microbiome from the Surat Basin, Australia. FEMS Microbiology Ecology, 2021, 97, .	1.3	7
297	Identification of a Novel Ciprofloxacin Tolerance Gene, <i>aciT</i> , Which Contributes to Filamentation in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	7
298	Homecoming: rewinding the reductive evolution of the chloroplast genome for increasing crop yields. Nature Communications, 2021, 12, 6734.	5.8	7
299	Genomic and phenotypic analyses of diverse non-clinical Acinetobacter baumannii strains reveals strain-specific virulence and resistance capacity. Microbial Genomics, 2022, 8, .	1.0	7
300	Cloning, expression, and purification of Brucella suis outer membrane proteins. Protein Expression and Purification, 2005, 40, 134-141.	0.6	6
301	Ecological effects of cefepime use during antibiotic cycling on the Gram-negative enteric flora of ICU patients. Intensive Care Medicine Experimental, 2018, 6, 19.	0.9	6
302	Comparative membrane proteomics reveal contrasting adaptation strategies for coastal and oceanic marine <i>Synechococcus</i> cyanobacteria. Environmental Microbiology, 2020, 22, 1816-1828.	1.8	6
303	Rapid optimisation of cellulolytic enzymes ratios in Saccharomyces cerevisiae using in vitro SCRaMbLE. Biotechnology for Biofuels, 2020, 13, 182.	6.2	6
304	Functional characterisation of substrate-binding proteins to address nutrient uptake in marine picocyanobacteria. Biochemical Society Transactions, 2021, 49, 2465-2481.	1.6	6
305	Toward Methanol-Based Biomanufacturing: Emerging Strategies for Engineering Synthetic Methylotrophy in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2022, 11, 2548-2563.	1.9	6
306	A high efficiency cloning and expression system for proteomic analysis. Proteomics, 2006, 6, 4038-4046.	1.3	5

#	Article	IF	CITATIONS
307	Statistical Analysis of Microarray Data with Replicated Spots: A Case Study with <i>Synechococcus</i> WH8102. Comparative and Functional Genomics, 2009, 2009, 1-11.	2.0	5
308	Draft Genome Sequence of Bacillus alcalophilus AV1934, a Classic Alkaliphile Isolated from Human Feces in 1934. Genome Announcements, 2014, 2, .	0.8	5
309	Structure of a short-chain dehydrogenase/reductase (SDR) within a genomic island from a clinical strain ofAcinetobacter baumannii. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1318-1323.	0.4	5
310	Defining the microbial effluxome in the content of the host-microbiome interaction. Frontiers in Pharmacology, 2015, 6, 31.	1.6	5
311	Rapid Colorimetric Detection of Genome Evolution in SCRaMbLEd Synthetic Saccharomyces cerevisiae Strains. Microorganisms, 2020, 8, 1914.	1.6	5
312	Increasing the PACE of characterising novel transporters by functional genomics. Current Opinion in Microbiology, 2021, 64, 1-8.	2.3	5
313	Genomics of Pseudomonas fluorescens Pf-5. , 2007, , 3-30.		5
314	Microbial multidrug efflux: introduction. Journal of Molecular Microbiology and Biotechnology, 2001, 3, 143-4.	1.0	5
315	Disruption of Transporters Affiliated with Enantio-Pyochelin Biosynthesis Gene Cluster of Pseudomonas protegens Pf-5 Has Pleiotropic Effects. PLoS ONE, 2016, 11, e0159884.	1.1	4
316	Delving into defence: identifying the Pseudomonas protegens Pf-5 gene suite involved in defence against secreted products of fungal, oomycete and bacterial rhizosphere competitors. Microbial Genomics, 2021, 7, .	1.0	4
317	Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes — an analysis. Gene, 1993, 132, 155.	1.0	3
318	Picochlorum sp. SENEW3. Trends in Genetics, 2022, 38, 209-210.	2.9	3
319	Novel functional insights into a modified sugar-binding protein from Synechococcus MITS9220. Scientific Reports, 2022, 12, 4805.	1.6	3
320	Microbial Community Shifts on Organic Rocks of Different Maturities Reveal potential Catabolisers of Organic Matter in Coal. Microbial Ecology, 2022, 84, 780-793.	1.4	2
321	Draft Genome Sequence of <i>Desulfovibrio</i> sp. Strain CSMB_222, Isolated from Coal Seam Formation Water. Microbiology Resource Announcements, 2021, 10, e0056421.	0.3	2
322	Transport, Solute. , 2009, , 529-544.		1
323	A Sample-to-Sequence Protocol for Genus Targeted Transcriptomic Profiling: Application to Marine Synechococcus. Frontiers in Microbiology, 2016, 7, 1592.	1.5	1
324	Draft Genome Sequence of Dietzia sp. Strain SYD-A1, Isolated from Coal Seam Formation Water. Microbiology Resource Announcements, 2021, 10, .	0.3	1

#	Article	IF	CITATIONS
325	Clostridium perfringens. , 0, , 213-221.		1
326	Crystal structure of a UDP-GlcNAc epimerase for surface polysaccharide biosynthesis in Acinetobacter baumannii. PLoS ONE, 2018, 13, e0191610.	1.1	1
327	Fluorescence-Based for the Detection of the Unfolded Protein. Methods in Molecular Biology, 2022, 2378, 19-30.	0.4	1
328	Microbial Genomics. , 2001, , 1196-1203.		0
329	Microbial Genomics. , 2001, , 399-404.		0
330	Transporter protein families. , 2005, , .		0
331	6. Microbial Slime Curtain Communities of the Nullarbor Caves. , 2015, , 125-136.		0
332	Microbial Solute Transporters. , 2019, , 157-157.		0
333	Microbial Solute Transportersâ~†. , 2014, , .		0