Sander Jl Van Den Heuvel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1924044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Map of the Interactome Network of the Metazoan C. elegans. Science, 2004, 303, 540-543.	6.0	1,587
2	Toward Improving Caenorhabditis elegans Phenome Mapping With an ORFeome-Based RNAi Library. Genome Research, 2004, 14, 2162-2168.	2.4	831
3	[34] GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes. Methods in Enzymology, 2000, 328, 575-IN7.	0.4	570
4	Conserved functions of the pRB and E2F families. Nature Reviews Molecular Cell Biology, 2008, 9, 713-724.	16.1	444
5	Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle, 2016, 15, 196-212.	1.3	417
6	An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature, 2006, 442, 700-704.	13.7	351
7	A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes and Development, 2003, 17, 1225-1239.	2.7	215
8	DOCK4, a GTPase Activator, Is Disrupted during Tumorigenesis. Cell, 2003, 112, 673-684.	13.5	211
9	A Protein Domain-Based Interactome Network for C. elegans Early Embryogenesis. Cell, 2008, 134, 534-545.	13.5	196
10	CRISPR/Cas9-Targeted Mutagenesis in <i>Caenorhabditis elegans</i> . Genetics, 2013, 195, 1187-1191.	1.2	153
11	S and G 2 Phase Roles for Cdk2 Revealed by Inducible Expression of a Dominant-Negative Mutant in Human Cells. Molecular and Cellular Biology, 2001, 21, 2755-2766.	1.1	136
12	NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Gα. Nature Cell Biology, 2009, 11, 269-277.	4.6	113
13	Large-scale RNAi screens identify novel genes that interact with the C. elegans retinoblastoma pathway as well as splicing-related components with synMuv B activity. BMC Developmental Biology, 2007, 7, 30.	2.1	101
14	<i>lin-35</i> Rb and <i>cki-1</i> Cip/Kip cooperate in developmental regulation of G1 progression in <i>C. elegans</i> . Development (Cambridge), 2001, 128, 4349-4359.	1.2	99
15	LIN-5 Is a Novel Component of the Spindle Apparatus Required for Chromosome Segregation and Cleavage Plane Specification in Caenorhabditis elegans. Journal of Cell Biology, 2000, 148, 73-86.	2.3	96
16	C. elegans Class B Synthetic Multivulva Genes Act in G 1 Regulation. Current Biology, 2002, 12, 906-911.	1.8	94
17	The Conserved Kinases CDK-1, GSK-3, KIN-19, and MBK-2 Promote OMA-1 Destruction to Regulate the Oocyte-to-Embryo Transition in C. elegans. Current Biology, 2006, 16, 47-55.	1.8	94
18	G1/S Inhibitors and the SWI/SNF Complex Control Cell-Cycle Exit during Muscle Differentiation. Cell, 2015, 162, 300-313.	13.5	93

Sander JL VAN DEN HEUVEL

#	Article	IF	CITATIONS
19	Polymerase $\hat{\Gamma}$ is a key driver of genome evolution and of CRISPR/Cas9-mediated mutagenesis. Nature Communications, 2015, 6, 7394.	5.8	87
20	The CDC-14 phosphatase controls developmental cell-cycle arrest in C. elegans. Nature Cell Biology, 2004, 6, 777-783.	4.6	84
21	Cell-cycle regulation. WormBook, 2005, , 1-16.	5.3	84
22	SUMO modification is required for in vivo Hox gene regulation by the Caenorhabditis elegans Polycomb group protein SOP-2. Nature Genetics, 2004, 36, 507-511.	9.4	79
23	Optogenetic dissection of mitotic spindle positioning in vivo. ELife, 2018, 7, .	2.8	69
24	aPKC phosphorylates NuMA-related LIN-5 to position the mitotic spindle during asymmetric division. Nature Cell Biology, 2011, 13, 1132-1138.	4.6	66
25	Cell shape and Wnt signaling redundantly control the division axis of <i>C. elegans </i> epithelial stem cells. Development (Cambridge), 2011, 138, 4375-4385.	1.2	66
26	Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells. Nature Communications, 2015, 6, 5906.	5.8	62
27	Determination of the Cleavage Plane in Early <i>C. elegans</i> Embryos. Annual Review of Genetics, 2008, 42, 389-411.	3.2	59
28	The C. elegans Polycomb Gene sop-2 Encodes an RNA Binding Protein. Molecular Cell, 2004, 14, 841-847.	4.5	56
29	Neuron-Specific Regulation of Associative Learning and Memory by MAGI-1 in C. elegans. PLoS ONE, 2009, 4, e6019.	1.1	55
30	Local microtubule organization promotes cargo transport in <i>C. elegans</i> dendrites. Journal of Cell Science, 2018, 131, .	1.2	51
31	<i>C. elegans</i> mitotic cyclins have distinct as well as overlapping functions in chromosome segregation. Cell Cycle, 2009, 8, 4091-4102.	1.3	47
32	Protein Degradation: CUL-3 and BTB – Partners in Proteolysis. Current Biology, 2004, 14, R59-R61.	1.8	45
33	Light-controlled intracellular transport in Caenorhabditis elegans. Current Biology, 2016, 26, R153-R154.	1.8	44
34	A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large. BMC Biology, 2016, 14, 66.	1.7	40
35	Two populations of cytoplasmic dynein contribute to spindle positioning in <i>C. elegans</i> embryos. Journal of Cell Biology, 2017, 216, 2777-2793.	2.3	39
36	Transcriptional control of cell-cycle quiescence during C. elegans development. Developmental Biology, 2008, 313, 603-613.	0.9	38

#	Article	IF	CITATIONS
37	Caenorhabditis elegans Cyclin D/CDK4 and Cyclin E/CDK2 Induce Distinct Cell Cycle Re-Entry Programs in Differentiated Muscle Cells. PLoS Genetics, 2011, 7, e1002362.	1.5	33
38	Developmental Control of the Cell Cycle: Insights from <i>Caenorhabditis elegans</i> . Genetics, 2019, 211, 797-829.	1.2	33
39	C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability. Developmental Biology, 2011, 350, 358-369.	0.9	28
40	Cell-cycle control in Caenorhabditis elegans: how the worm moves from G1 to S. Oncogene, 2005, 24, 2756-2764.	2.6	27
41	APC16 is a conserved subunit of the anaphase-promoting complex/cyclosome. Journal of Cell Science, 2010, 123, 1623-1633.	1.2	27
42	Identification of Residues of the Caenorhabditis elegans LIN-1 ETS Domain That Are Necessary for DNA Binding and Regulation of Vulval Cell Fates. Genetics, 2004, 167, 1697-1709.	1.2	25
43	A combined binary interaction and phenotypic map of C.Âelegans cell polarity proteins. Nature Cell Biology, 2016, 18, 337-346.	4.6	25
44	Tumor suppressor APC is an attenuator of spindle-pulling forces during <i>C. elegans</i> asymmetric cell division. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E954-E963.	3.3	24
45	Dose-dependent functions of SWI/SNF BAF in permitting and inhibiting cell proliferation in vivo. Science Advances, 2020, 6, eaay3823.	4.7	22
46	Protein degradation: CUL-3 and BTBpartners in proteolysis. Current Biology, 2004, 14, R59-61.	1.8	20
47	A dual transcriptional reporter and CDK-activity sensor marks cell cycle entry and progression in C. elegans. PLoS ONE, 2017, 12, e0171600.	1.1	19
48	C. elegans Cell Cycle Analysis. Methods in Cell Biology, 2012, 107, 265-294.	0.5	18
49	Multisite Phosphorylation of NuMA-Related LIN-5 Controls Mitotic Spindle Positioning in C. elegans. PLoS Genetics, 2016, 12, e1006291.	1.5	16
50	Malignant Worms: What Cancer Research Can Learn fromC. elegans. Cancer Investigation, 2002, 20, 264-275.	0.6	14
51	F-actin asymmetry and the endoplasmic reticulum–associated TCC-1 protein contribute to stereotypic spindle movements in the <i>Caenorhabditis elegans</i> embryo. Molecular Biology of the Cell, 2013, 24, 2201-2215.	0.9	14
52	<i>C. elegans</i> Runx/CBFÎ ² suppresses POP-1 TCF to convert asymmetric to proliferative division of stem cell-like seam cells. Development (Cambridge), 2019, 146, .	1.2	12
53	Genome-wide RNAi screen for synthetic lethal interactions with the C. elegans kinesin-5 homolog BMK-1. Scientific Data, 2015, 2, 150020.	2.4	11
54	Caenorhabditis elegans LET-413 Scribble is essential in the epidermis for growth, viability, and directional outgrowth of epithelial seam cells. PLoS Genetics, 2021, 17, e1009856.	1.5	7

SANDER JL VAN DEN HEUVEL

#	Article	IF	CITATIONS
55	The C. elegans cell cycle: overview of molecules and mechanisms. Methods in Molecular Biology, 2005, 296, 51-67.	0.4	7
56	Tissue polarity and PCP protein function: C.Âelegans as an emerging model. Current Opinion in Cell Biology, 2020, 62, 159-167.	2.6	6
57	Coordination of Cell Proliferation and Differentiation: Finding a GEM in the Root?. Developmental Cell, 2007, 12, 841-842.	3.1	4
58	Tipping the spindle into the right position. Journal of Cell Biology, 2016, 213, 293-295.	2.3	4
59	Cell Polarity: Getting the PARty Started. Current Biology, 2019, 29, R637-R639.	1.8	4
60	Replication Licensing: Oops! \hat{a} ∈ I Did It Again. Current Biology, 2007, 17, R630-R632.	1.8	3
61	The <i>C. elegans</i> Cell Cycle: Overview of Molecules and Mechanisms. , 2005, , 051-068.		2
62	APC16 is a conserved subunit of the anaphase-promoting complex/cyclosome. Journal of Cell Science, 2015, 128, 4025-4025.	1.2	1
63	Switching on regeneration. Stem Cell Investigation, 2016, 3, 41-41.	1.3	1
64	Polarity Control of Spindle Positioning in the C. elegans Embryo. , 2015, , 119-141.		0