
Atsushi Fukushima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1923764/publications.pdf Version: 2024-02-01

Δτομομι Εμγμομιγγ

#	Article	IF	CITATIONS
1	Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Plant Molecular Biology, 2022, 109, 249-269.	3.9	26
2	Development of RIKEN Plant Metabolome MetaDatabase. Plant and Cell Physiology, 2022, 63, 433-440.	3.1	6
3	Transcriptomic, Hormonomic and Metabolomic Analyses Highlighted the Common Modules Related to Photosynthesis, Sugar Metabolism and Cell Division in Parthenocarpic Tomato Fruits during Early Fruit Set. Cells, 2022, 11, 1420.	4.1	3
4	Maize specialized metabolome networks reveal organ-preferential mixed glycosides. Computational and Structural Biotechnology Journal, 2021, 19, 1127-1144.	4.1	15
5	Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
6	Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature, 2020, 584, 109-114.	27.8	98
7	Fruit setting rewires central metabolism via gibberellin cascades. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23970-23981.	7.1	34
8	Metabolite and Phytohormone Profiling Illustrates Metabolic Reprogramming as an Escape Strategy of Deepwater Rice during Partially Submerged Stress. Metabolites, 2020, 10, 68.	2.9	17
9	Cytosolic GLUTAMINE SYNTHETASE1;1 Modulates Metabolism and Chloroplast Development in Roots. Plant Physiology, 2020, 182, 1894-1909.	4.8	25
10	BioHackathon 2015: Semantics of data for life sciences and reproducible research. F1000Research, 2020, 9, 136.	1.6	5
11	Application of Quantum Chemical Calculation for Prediction of Ultraviolet-vis Spectrum of Plant Self-protective MetabolitesProduced by UV-B Irradiation. Journal of Computer Chemistry Japan, 2019, 18, 108-114.	0.1	0
12	Comparative co-expression network analysis extracts the <i>SIHSP70</i> gene affecting to shoot elongation of tomato. Plant Biotechnology, 2019, 36, 143-153.	1.0	8
13	Reduction in sucrose contents by downregulation of fructose-1,6-bisphosphatase 2 causes tiller outgrowth cessation in rice mutants lacking glutamine synthetase1;2. Rice, 2018, 11, 65.	4.0	17
14	A Systems Analysis With "Simplified Source-Sink Model―Reveals Metabolic Reprogramming in a Pair of Source-to-Sink Organs During Early Fruit Development in Tomato by LED Light Treatments. Frontiers in Plant Science, 2018, 9, 1439.	3.6	9
15	Metabolic Reprogramming in Leaf Lettuce Grown Under Different Light Quality and Intensity Conditions Using Narrow-Band LEDs. Scientific Reports, 2018, 8, 7914.	3.3	77
16	<i>HEAT INDUCIBLE LIPASE1</i> Remodels Chloroplastic Monogalactosyldiacylglycerol by Liberating α-Linolenic Acid in Arabidopsis Leaves under Heat Stress. Plant Cell, 2018, 30, 1887-1905.	6.6	71
17	High Impact Gene Discovery: Simple Strand-Specific mRNA Library Construction and Differential Regulatory Analysis Based on Gene Co-Expression Network. Methods in Molecular Biology, 2018, 1830, 163-189.	0.9	24
18	Third DWF1 paralog in Solanaceae, sterol Δ ²⁴ -isomerase, branches withanolide biosynthesis from the general phytosterol pathway. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8096-E8103.	7.1	51

Атѕизні Ғикизніма

#	Article	IF	CITATIONS
19	Light Controls Protein Localization through Phytochrome-Mediated Alternative Promoter Selection. Cell, 2017, 171, 1316-1325.e12.	28.9	99
20	Acetate-mediated novel survival strategy against drought in plants. Nature Plants, 2017, 3, 17097.	9.3	232
21	Effects of Combined Low Glutathione with Mild Oxidative and Low Phosphorus Stress on the Metabolism of Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 1464.	3.6	16
22	eQTLs Regulating Transcript Variations Associated with Rapid Internode Elongation in Deepwater Rice. Frontiers in Plant Science, 2017, 8, 1753.	3.6	29
23	An MYB transcription factor regulating specialized metabolisms in <i>Ophiorrhiza pumila</i> . Plant Biotechnology, 2016, 33, 1-9.	1.0	35
24	Comparative Characterization of the Leaf Tissue of Physalis alkekengi and Physalis peruviana Using RNA-seq and Metabolite Profiling. Frontiers in Plant Science, 2016, 7, 1883.	3.6	27
25	Human uterus myoma and gene expression profiling: A novel in vitro model for studying secretory leukocyte protease inhibitor-mediated tumor invasion. Cancer Letters, 2016, 379, 84-93.	7.2	5
26	Whole Transcriptome Analysis Using Next-Generation Sequencing of Sterile-Cultured Eisenia andrei for Immune System Research. PLoS ONE, 2015, 10, e0118587.	2.5	6
27	Using Metabolomic Approaches to Explore Chemical Diversity in Rice. Molecular Plant, 2015, 8, 58-67.	8.3	119
28	Assessing metabolomic and chemical diversity of a soybean lineage representing 35Âyears of breeding. Metabolomics, 2015, 11, 261-270.	3.0	48
29	Lack of cytosolic glutamine synthetase1;2 in vascular tissues of axillary buds causes severe reduction in their outgrowth and disorder of metabolic balance in rice seedlings. Plant Journal, 2015, 81, 347-356.	5.7	53
30	High-Throughput Sequencing and De Novo Assembly of Red and Green Forms of the Perilla frutescens var. crispa Transcriptome. PLoS ONE, 2015, 10, e0129154.	2.5	40
31	Morphological and plant hormonal changes during parasitization by <i>Cuscuta japonica</i> on <i>Momordica charantia</i> . Journal of Plant Interactions, 2014, 9, 220-232.	2.1	23
32	Integrated network analysis and effective tools in plant systems biology. Frontiers in Plant Science, 2014, 5, 598.	3.6	55
33	A network perspective on nitrogen metabolism from model to crop plants using integrated â€~omics' approaches. Journal of Experimental Botany, 2014, 65, 5619-5630.	4.8	54
34	Integrated analysis of transcriptome and metabolome of Arabidopsis albino or pale green mutants with disrupted nuclear-encoded chloroplast proteins. Plant Molecular Biology, 2014, 85, 411-428.	3.9	48
35	Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis Â. Plant Physiology, 2014, 165, 948-961.	4.8	49
36	Transcriptome data modeling for targeted plant metabolic engineering. Current Opinion in Biotechnology, 2013, 24, 285-290.	6.6	50

Атѕизні Ғикизніма

#	Article	IF	CITATIONS
37	DiffCorr: An R package to analyze and visualize differential correlations in biological networks. Gene, 2013, 518, 209-214.	2.2	168
38	Recent Progress in the Development of Metabolome Databases for Plant Systems Biology. Frontiers in Plant Science, 2013, 4, 73.	3.6	68
39	Current challenges and future potential of tomato breeding using omics approaches. Breeding Science, 2013, 63, 31-41.	1.9	17
40	Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis. Metabolites, 2013, 3, 223-242.	2.9	18
41	Exploring Tomato Gene Functions Based on Coexpression Modules Using Graph Clustering and Differential Coexpression Approaches Â. Plant Physiology, 2012, 158, 1487-1502.	4.8	63
42	Deciphering Starch Quality of Rice Kernels Using Metabolite Profiling and Pedigree Network Analysis. Molecular Plant, 2012, 5, 442-451.	8.3	29
43	Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in <i>Arabidopsis thaliana</i> . Plant Journal, 2012, 69, 154-167.	5.7	164
44	Metabolomic approaches toward understanding nitrogen metabolism in plants. Journal of Experimental Botany, 2011, 62, 1439-1453.	4.8	198
45	Metabolite Signature during Short-Day Induced Growth Cessation in Populus. Frontiers in Plant Science, 2011, 2, 29.	3.6	20
46	Metabolomics data reveal a crucial role of cytosolic glutamine synthetase 1;1 in coordinating metabolic balance in rice. Plant Journal, 2011, 66, 456-466.	5.7	133
47	Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UVâ€B light. Plant Journal, 2011, 67, 354-369.	5.7	249
48	Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach. BMC Systems Biology, 2011, 5, 1.	3.0	215
49	Transcriptional and metabolic programs following exposure of plants to UV-B irradiation. Plant Signaling and Behavior, 2011, 6, 1987-1992.	2.4	54
50	Effects of molybdenum deficiency and defects in molybdate transporter MOT1 on transcript accumulation and nitrogen/sulphur metabolism in Arabidopsis thaliana. Journal of Experimental Botany, 2011, 62, 1483-1497.	4.8	55
51	Covering Chemical Diversity of Genetically-Modified Tomatoes Using Metabolomics for Objective Substantial Equivalence Assessment. PLoS ONE, 2011, 6, e16989.	2.5	110
52	Comparative metabolomics charts the impact of genotype-dependent methionine accumulation in Arabidopsis thaliana. Amino Acids, 2010, 39, 1013-1021.	2.7	19
53	Consolidating metabolite identifiers to enable contextual and multi-platform metabolomics data analysis. BMC Bioinformatics, 2010, 11, 214.	2.6	38
54	Metabolomic Screening Applied to Rice FOX Arabidopsis Lines Leads to the Identification of a Gene-Changing Nitrogen Metabolism. Molecular Plant, 2010, 3, 125-142.	8.3	87

Атѕизні Ғикизніма

#	Article	IF	CITATIONS
55	Linkage between circadian clock and tricarboxylic acid cycle in Arabidopsis. Plant Signaling and Behavior, 2009, 4, 660-662.	2.4	11
56	Transcript Profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR Arrhythmic Triple Mutant Reveals a Role for the Circadian Clock in Cold Stress Response. Plant and Cell Physiology, 2009, 50, 447-462.	3.1	249
57	Impact of clock-associated <i>Arabidopsis</i> pseudo-response regulators in metabolic coordination. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7251-7256.	7.1	228
58	Integrated omics approaches in plant systems biology. Current Opinion in Chemical Biology, 2009, 13, 532-538.	6.1	201
59	Compensation for Systematic Cross-Contribution Improves Normalization of Mass Spectrometry Based Metabolomics Data. Analytical Chemistry, 2009, 81, 7974-7980.	6.5	173
60	Characterizing gene coexpression modules in Oryza sativa based on a graph-clustering approach. Plant Biotechnology, 2009, 26, 485-493.	1.0	12
61	SVD-based Anatomy of Gene Expressions for Correlation Analysis in Arabidopsis thaliana. DNA Research, 2008, 15, 367-374.	3.4	17
62	Physiological Roles of the <i>β</i> -Substituted Alanine Synthase Gene Family in Arabidopsis. Plant Physiology, 2008, 146, 310-320.	4.8	161
63	Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana. BMC Systems Biology, 2007, 1, 53.	3.0	116
64	Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 855, 71-79.	2.3	169
65	Periodicity in prokaryotic and eukaryotic genomes identified by power spectrum analysis. Gene, 2002, 300, 203-211.	2.2	54