
## Slawo M Lomnicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1923703/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Environmentally Persistent Free Radicals (EPFRs). 1. Generation of Reactive Oxygen Species in Aqueous<br>Solutions. Environmental Science & Technology, 2011, 45, 8559-8566.                                         | 10.0 | 265       |
| 2  | Copper Oxide-Based Model of Persistent Free Radical Formation on Combustion-Derived Particulate<br>Matter. Environmental Science & Technology, 2008, 42, 4982-4988.                                                  | 10.0 | 232       |
| 3  | Origin and Health Impacts of Emissions of Toxic By-Products and Fine Particles from Combustion and<br>Thermal Treatment of Hazardous Wastes and Materials. Environmental Health Perspectives, 2006, 114,<br>810-817. | 6.0  | 158       |
| 4  | Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity. Particle and Fibre Toxicology, 2009, 6, 11.                                                 | 6.2  | 148       |
| 5  | Formation and Stabilization of Combustion-Generated, Environmentally Persistent Radicals on Ni(II)O<br>Supported on a Silica Surface. Environmental Science & Technology, 2012, 46, 9406-9411.                       | 10.0 | 106       |
| 6  | Particulate Matter Containing Environmentally Persistent Free Radicals and Adverse Infant<br>Respiratory Health Effects: A Review. Journal of Biochemical and Molecular Toxicology, 2013, 27, 56-68.                 | 3.0  | 90        |
| 7  | Effect of Copper Oxide Concentration on the Formation and Persistency of Environmentally<br>Persistent Free Radicals (EPFRs) in Particulates. Environmental Science & Technology, 2014, 48,<br>2212-2217.            | 10.0 | 89        |
| 8  | Lifetime of combustion-generated environmentally persistent free radicals on Zn(ii)O and other transition metal oxides. Journal of Environmental Monitoring, 2012, 14, 2803.                                         | 2.1  | 79        |
| 9  | Model Combustion-Generated Particulate Matter Containing Persistent Free Radicals Redox Cycle to<br>Produce Reactive Oxygen Species. Chemical Research in Toxicology, 2013, 26, 1862-1871.                           | 3.3  | 62        |
| 10 | In vitro and in vivo assessment of pulmonary risk associated with exposure to combustion generated fine particles. Environmental Toxicology and Pharmacology, 2010, 29, 173-182.                                     | 4.0  | 56        |
| 11 | EPFR formation from phenol adsorption on Al2O3 and TiO2: EPR and EELS studies. Chemical Physics, 2013, 422, 277-282.                                                                                                 | 1.9  | 54        |
| 12 | Formation of PCDD/Fs from the Copper Oxide-Mediated Pyrolysis and Oxidation of 1,2-Dichlorobenzene. Environmental Science & amp; Technology, 2011, 45, 1034-1040.                                                    | 10.0 | 53        |
| 13 | PCDD/PCDF Ratio in the Precursor Formation Model over CuO Surface. Environmental Science &<br>Technology, 2014, 48, 13864-13870.                                                                                     | 10.0 | 53        |
| 14 | Ferric Oxide Mediated Formation of PCDD/Fs from 2-Monochlorophenol. Environmental Science &<br>Technology, 2009, 43, 368-373.                                                                                        | 10.0 | 52        |
| 15 | Environmentally persistent free radicals decrease cardiac function before and after<br>ischemia/reperfusion injury <i>in vivo</i> . Journal of Receptor and Signal Transduction Research, 2011,<br>31, 157-167.      | 2.5  | 50        |
| 16 | Formation of Environmentally Persistent Free Radicals on α-Al <sub>2</sub> O <sub>3</sub> .<br>Environmental Science & Technology, 2016, 50, 11094-11102.                                                            | 10.0 | 48        |
| 17 | Plants in Air Phytoremediation. Advances in Botanical Research, 2017, 83, 319-346.                                                                                                                                   | 1.1  | 38        |
| 18 | Formation of PCDD/Fs from oxidation of 2-monochlorophenol over an Fe2O3/silica surface.                                                                                                                              | 8.2  | 30        |

Chemosphere, 2012, 88, 371-376.

SLAWO M LOMNICKI

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes.<br>Toxicology and Applied Pharmacology, 2014, 277, 200-209.                                  | 2.8  | 22        |
| 20 | Role of Fe2O3 in fly ash surrogate on PCDD/Fs formation from 2-monochlorophenol. Chemosphere, 2019, 226, 809-816.                                                                               | 8.2  | 19        |
| 21 | Environmentally persistent free radical-containing particulate matter competitively inhibits<br>metabolism by cytochrome P450 1A2. Toxicology and Applied Pharmacology, 2015, 289, 223-230.     | 2.8  | 18        |
| 22 | Inhibition of cytochrome P450 2B4 by environmentally persistent free radical-containing particulate matter. Biochemical Pharmacology, 2015, 95, 126-132.                                        | 4.4  | 18        |
| 23 | A Scalable Field Study Protocol and Rationale for Passive Ambient Air Sampling: A Spatial<br>Phytosampling for Leaf Data Collection. Environmental Science & Technology, 2017, 51, 10663-10673. | 10.0 | 18        |
| 24 | Kinetic Modeling of Cellulose Fractional Pyrolysis. Energy & amp; Fuels, 2018, 32, 3436-3446.                                                                                                   | 5.1  | 16        |
| 25 | Size-selective synthesis of immobilized copper oxide nanoclusters on silica. Materials Science and<br>Engineering B: Solid-State Materials for Advanced Technology, 2010, 175, 136-142.         | 3.5  | 15        |
| 26 | Influence of polymer additives on gas-phase emissions from 3D printer filaments. Chemosphere, 2021, 279, 130543.                                                                                | 8.2  | 15        |
| 27 | Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol.<br>Chemosphere, 2018, 203, 96-103.                                                             | 8.2  | 11        |
| 28 | Formation of DF, PCDD/Fs and EPFRs from 1,2,3-trichlorobenzene over metal oxide/silica surface.<br>Waste Management, 2020, 118, 27-35.                                                          | 7.4  | 11        |
| 29 | Contribution of aluminas and aluminosilicates to the formation of PCDD/Fs on fly ashes.<br>Chemosphere, 2016, 144, 2421-2426.                                                                   | 8.2  | 10        |
| 30 | Polybrominated diphenyl ethers (PBDEs) in ambient air samples at the electronic waste (e-waste)<br>reclamation site. Waste Disposal & Sustainable Energy, 2019, 1, 79-89.                       | 2.5  | 10        |
| 31 | Surface catalysed PCDD/F formation from precursors - high PCDF yield does not indicate de novo mechanism!. International Journal of Environment and Pollution, 2017, 61, 208.                   | 0.2  | 6         |
| 32 | Developmental Hazard of Environmentally Persistent Free Radicals and Protective Effect of TEMPOL in<br>Zebrafish Model. Toxics, 2021, 9, 12.                                                    | 3.7  | 6         |
| 33 | Surface catalysed PCDD/F formation from precursors - high PCDF yield does not indicate de novo mechanism!. International Journal of Environment and Pollution, 2017, 61, 208.                   | 0.2  | 4         |
| 34 | Phytosampling—a supplementary tool for particulate matter (PM) speciation characterization.<br>Environmental Science and Pollution Research, 2021, 28, 39310-39321.                             | 5.3  | 4         |