David Rubin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/192355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE <i>HUBBLE SPACE TELESCOPE</i> CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE <i>z</i> > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE. Astrophysical Journal, 2012, 746, 85.	4.5	1,382
2	Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets. Astrophysical Journal, 2008, 686, 749-778.	4.5	1,217
3	SPECTRA AND <i>HUBBLE SPACE TELESCOPE</i> LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < <i>z</i> < 1.12 AND THE UNION2 COMPILATION. Astrophysical Journal, 2010, 716, 712-738.	4.5	1,143
4	CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT. Astrophysical Journal, 2015, 802, 20.	4.5	171
5	SCALING RELATIONS AND OVERABUNDANCE OF MASSIVE CLUSTERS AT <i>z</i> ≳ 1 FROM WEAK-LENSING STUDIES WITH THE <i>HUBBLE SPACE TELESCOPE</i> . Astrophysical Journal, 2011, 737, 59.	4.5	104
6	Strong dependence of Type Ia supernova standardization on the local specific star formation rate. Astronomy and Astrophysics, 2020, 644, A176.	5.1	96
7	TYPE la SUPERNOVA CARBON FOOTPRINTS. Astrophysical Journal, 2011, 743, 27.	4.5	78
8	UNITY: CONFRONTING SUPERNOVA COSMOLOGY'S STATISTICAL AND SYSTEMATIC UNCERTAINTIES IN A UNIFIED BAYESIAN FRAMEWORK. Astrophysical Journal, 2015, 813, 137.	4.5	68
9	IS THE EXPANSION OF THE UNIVERSE ACCELERATING? ALL SIGNS POINT TO YES. Astrophysical Journal Letters, 2016, 833, L30.	8.3	62
10	AN INTENSIVE <i>HUBBLE SPACE TELESCOPE</i> SURVEY FOR <i>z</i> >1 TYPE la SUPERNOVAE BY TARGETING GALAXY CLUSTERS. Astronomical Journal, 2009, 138, 1271-1283.	4.7	60
11	IMPROVING COSMOLOGICAL DISTANCE MEASUREMENTS USING TWIN TYPE IA SUPERNOVAE. Astrophysical Journal, 2015, 815, 58.	4.5	47
12	THE <i>HUBBLE SPACE TELESCOPE</i> CLUSTER SUPERNOVA SURVEY. III. CORRELATED PROPERTIES OF TYPE Ia SUPERNOVAE AND THEIR HOSTS AT 0.9 < <i>z</i> < 1.46. Astrophysical Journal, 2012, 750, 1.	4.5	46
13	PRECISION MEASUREMENT OF THE MOST DISTANT SPECTROSCOPICALLY CONFIRMED SUPERNOVA Ia WITH THE <i>HUBBLE SPACE TELESCOPE</i> . Astrophysical Journal, 2013, 763, 35.	4.5	39
14	SN2019dge: A Helium-rich Ultra-stripped Envelope Supernova. Astrophysical Journal, 2020, 900, 46.	4.5	38
15	THE <i>HUBBLE SPACE TELESCOPE</i> CLUSTER SUPERNOVA SURVEY. II. THE TYPE Ia SUPERNOVA RATE IN HIGH-REDSHIFT GALAXY CLUSTERS. Astrophysical Journal, 2012, 745, 32.	4.5	37
16	SNEMO: Improved Empirical Models for Type Ia Supernovae. Astrophysical Journal, 2018, 869, 167.	4.5	37
17	Lensed Type Ia supernovae as probes of cluster mass models. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2742-2754.	4.4	33
18	THE <i>HUBBLE SPACE TELESCOPE</i> CLUSTER SUPERNOVA SURVEY. VI. THE VOLUMETRIC TYPE Ia SUPERNOVA RATE. Astrophysical Journal, 2012, 745, 31.	4.5	28

David Rubin

#	Article	IF	CITATIONS
19	Is the Expansion of the Universe Accelerating? All Signs Still Point to Yes: A Local Dipole Anisotropy Cannot Explain Dark Energy. Astrophysical Journal, 2020, 894, 68.	4.5	27
20	SUGAR: An improved empirical model of Type Ia supernovae based on spectral features. Astronomy and Astrophysics, 2020, 636, A46.	5.1	26
21	Evidence for Cosmic Acceleration Is Robust to Observed Correlations between Type Ia Supernova Luminosity and Stellar Age. Astrophysical Journal Letters, 2020, 896, L4.	8.3	26
22	Progenitor Mass Distribution for Core-collapse Supernova Remnants in M31 and M33. Astrophysical Journal, 2018, 861, 92.	4.5	22
23	The Hyper Suprime-Cam SSP transient survey in COSMOS: Overview. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	22
24	The Discovery of a Gravitationally Lensed Supernova Ia at Redshift 2.22. Astrophysical Journal, 2018, 866, 65.	4.5	21
25	SNÂ2012dn from early to late times: 09dc-like supernovae reassessedâ~ Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	19
26	Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor. Astrophysical Journal Letters, 2019, 880, L20.	8.3	19
27	The Extinction Properties of and Distance to the Highly Reddened Type IA Supernova 2012cu. Astrophysical Journal, 2017, 836, 157.	4.5	18
28	Host Galaxy Mass Combined with Local Stellar Age Improve Type Ia Supernovae Distances. Astrophysical Journal, 2021, 909, 28.	4.5	14
29	The Twins Embedding of Type Ia Supernovae. II. Improving Cosmological Distance Estimates. Astrophysical Journal, 2021, 912, 71.	4.5	12
30	Understanding type Ia supernovae through their <i>U</i> -band spectra. Astronomy and Astrophysics, 2018, 614, A71.	5.1	11
31	The Twins Embedding of Type Ia Supernovae. I. The Diversity of Spectra at Maximum Light. Astrophysical Journal, 2021, 912, 70.	4.5	11
32	Precise Mass Determination of SPT-CL J2106-5844, the Most Massive Cluster at zÂ>Â1. Astrophysical Journal, 2019, 887, 76.	4.5	9
33	TYPE Ia SUPERNOVA DISTANCE MODULUS BIAS AND DISPERSION FROM <i>K</i> -CORRECTION ERRORS: A DIRECT MEASUREMENT USING LIGHT CURVE FITS TO OBSERVED SPECTRAL TIME SERIES. Astrophysical Journal, 2015, 800, 57.	4.5	8
34	Correcting for peculiar velocities of Type Ia supernovae in clusters of galaxies. Astronomy and Astrophysics, 2018, 615, A162.	5.1	8
35	The HST See Change Program. I. Survey Design, Pipeline, and Supernova Discoveries*. Astrophysical Journal, 2021, 912, 87.	4.5	8
36	Initial Evaluation of SNEMO2 and SNEMO7 Standardization Derived from Current Light Curves of Type Ia Supernovae. Astrophysical Journal, 2020, 890, 60.	4.5	7

David Rubin

#	Article	IF	CITATIONS
37	CONSTRAINING DUST AND COLOR VARIATIONS OF HIGH-zSNe USING NICMOS ON THEHUBBLE SPACE TELESCOPE. Astrophysical Journal, 2009, 700, 1415-1427.	4.5	6
38	SN Ia Standardization on the Rise: Evidence for the Cosmological Importance of Pre-maximum Measurements. Astrophysical Journal, 2019, 871, 219.	4.5	6
39	See Change: VLT spectroscopy of a sample of high-redshift Type Ia supernova host galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3859-3880.	4.4	6
40	Going Forward with the Nancy Grace Roman Space Telescope Transient Survey: Validation of Precision Forward-modeling Photometry for Undersampled Imaging. Publications of the Astronomical Society of the Pacific, 2021, 133, 064001.	3.1	6
41	A <i>Spitzer</i> survey for dust-obscured supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4199-4209.	4.4	6
42	A CALIBRATION OF NICMOS CAMERA 2 FOR LOW COUNT RATES. Astronomical Journal, 2015, 149, 159.	4.7	5
43	Constraining the Dimensionality of SN Ia Spectral Variation with Twins. Astrophysical Journal, 2020, 897, 40.	4.5	5
44	The SNEMO and SUGAR Companion Data Sets. Research Notes of the AAS, 2020, 4, 63.	0.7	5
45	Does Gravity Fall Down? Evidence for Gravitational-wave Deflection along the Line of Sight to GW170817. Astrophysical Journal Letters, 2020, 890, L6.	8.3	3
46	The Roman Space Telescope Relative Calibration System and the Dark Energy Figure of Merit. Research Notes of the AAS, 2021, 5, 66.	0.7	1
47	Characterization of Unstable Pixels Using a Mixture Model: Application to HST WFC3 IR. Research Notes of the AAS, 2018, 2, 141.	0.7	1