Zhidong Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1923499/publications.pdf Version: 2024-02-01

ниромс **7**нош

#	Article	IF	CITATIONS
1	Facile synthesis of hollow urchin-like NiCo2O4 microspheres for high-performance sodium-ion batteries. Journal of Materials Science, 2016, 51, 9296-9305.	3.7	55
2	Electromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect. Smart Materials and Structures, 2017, 26, 095025.	3.5	37
3	Highly hierarchical porous structures constructed from NiO nanosheets act as Li ion and O ₂ pathways in long cycle life, rechargeable Li–O ₂ batteries. Chemical Communications, 2016, 52, 11772-11774.	4.1	29
4	Electromechanical analysis of bilayer piezoelectric sensors due to flexoelectricity and strain gradient elasticity. AIP Advances, 2019, 9, .	1.3	14
5	Domain structures of ferroelectric films under different electrical boundary conditions. AIP Advances, 2015, 5, .	1.3	12
6	Electromechanical Analysis of Flexoelectric Nanosensors Based on Nonlocal Elasticity Theory. Micromachines, 2020, 11, 1077.	2.9	11
7	Coupling Analysis of Flexoelectric Effect on Functionally Graded Piezoelectric Cantilever Nanobeams. Micromachines, 2021, 12, 595.	2.9	11
8	The influence of the electrical boundary condition on domain structures and electrocaloric effect of PbTiO3 nanostructures. AIP Advances, 2016, 6, 055207.	1.3	10
9	Analytical Electromechanical Modeling of Nanoscale Flexoelectric Energy Harvesting. Applied Sciences (Switzerland), 2019, 9, 2273.	2.5	10
10	Graphene-modified copper chromate as the anode of ultrafast rechargeable Li-ion batteries. Journal of Materials Science, 2017, 52, 2131-2141.	3.7	4
11	Bending and Vibration Analysis of Flexoelectric Beam Structure on Linear Elastic Substrates. Micromachines, 2022, 13, 915.	2.9	4
12	The transient response of hollow electrostrictive cylinder subjected to the electrical shock. Archive of Applied Mechanics, 2021, 91, 4039-4051.	2.2	3
13	Buckling analysis of stretchable ferroelectric thin film on elastomeric substrates. Acta Mechanica Solida Sinica, 2014, 27, 509-517.	1.9	2
14	The effect of the surface electrode distributions on domain structures of ferroelectric thin films. AIP Advances, 2017, 7, .	1.3	1