
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1922742/publications.pdf Version: 2024-02-01

Διρομείζισε

#	Article	IF	CITATIONS
1	Atherosclerosis. Nature, 2000, 407, 233-241.	13.7	4,551
2	Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472, 57-63.	13.7	4,238
3	Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 2013, 19, 576-585.	15.2	3,355
4	Integrative approaches for large-scale transcriptome-wide association studies. Nature Genetics, 2016, 48, 245-252.	9.4	1,618
5	Multi-omics approaches to disease. Genome Biology, 2017, 18, 83.	3.8	1,439
6	Genetics of gene expression surveyed in maize, mouse and man. Nature, 2003, 422, 297-302.	13.7	1,401
7	Atherosclerosis: Basic Mechanisms. Circulation, 1995, 91, 2488-2496.	1.6	1,387
8	Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 2016, 165, 111-124.	13.5	1,358
9	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	9.4	1,034
10	Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature, 1998, 394, 284-287.	13.7	1,017
11	Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell, 2015, 163, 1585-1595.	13.5	974
12	An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genetics, 2005, 37, 710-717.	9.4	967
13	Mapping the Genetic Architecture of Gene Expression in Human Liver. PLoS Biology, 2008, 6, e107.	2.6	872
14	Variations in DNA elucidate molecular networks that cause disease. Nature, 2008, 452, 429-435.	13.7	840
15	Trimethylamine-N-Oxide, a Metabolite Associated with Atherosclerosis, Exhibits Complex Genetic and Dietary Regulation. Cell Metabolism, 2013, 17, 49-60.	7.2	794
16	Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Research, 2006, 16, 995-1004.	2.4	785
17	Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 2021, 53, 156-165.	9.4	676
18	Thematic review series: The Pathogenesis of Atherosclerosis The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. Journal of Lipid Research, 2004, 45, 993-1007.	2.0	585

#	Article	IF	CITATIONS
19	Trimethylamine Nâ€Oxide Promotes Vascular Inflammation Through Signaling of Mitogenâ€Activated Protein Kinase and Nuclear Factorâ€₽B. Journal of the American Heart Association, 2016, 5, .	1.6	579
20	Arachidonate 5-Lipoxygenase Promoter Genotype, Dietary Arachidonic Acid, and Atherosclerosis. New England Journal of Medicine, 2004, 350, 29-37.	13.9	571
21	Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes, 2016, 7, 313-322.	4.3	564
22	The Yin and Yang of Oxidation in the Development of the Fatty Streak. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 831-842.	1.1	553
23	Comparative Analysis of Proteome and Transcriptome Variation in Mouse. PLoS Genetics, 2011, 7, e1001393.	1.5	548
24	Systems genetics approaches to understand complex traits. Nature Reviews Genetics, 2014, 15, 34-48.	7.7	529
25	Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene Analysis. Molecular Cell, 2019, 75, 644-660.e5.	4.5	488
26	Molecular basis of the little mouse phenotype and Implications for cell type-specific growth. Nature, 1993, 364, 208-213.	13.7	477
27	Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice. Cell Metabolism, 2013, 17, 141-152.	7.2	464
28	Individual diet has sex-dependent effects on vertebrate gut microbiota. Nature Communications, 2014, 5, 4500.	5.8	464
29	Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. Journal of Clinical Investigation, 2011, 121, 2693-2708.	3.9	464
30	Relationship of Paraoxonase 1 (PON1) Gene Polymorphisms and Functional Activity With Systemic Oxidative Stress and Cardiovascular Risk. JAMA - Journal of the American Medical Association, 2008, 299, 1265.	3.8	463
31	CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature, 2016, 536, 86-90.	13.7	443
32	Integrating Genetic and Network Analysis to Characterize Genes Related to Mouse Weight. PLoS Genetics, 2006, 2, e130.	1.5	419
33	Î ³ -Butyrobetaine Is a Proatherogenic Intermediate in Gut Microbial Metabolism of L-Carnitine to TMAO. Cell Metabolism, 2014, 20, 799-812.	7.2	416
34	Decreased Atherosclerotic Lesion Formation in Human Serum Paraoxonase Transgenic Mice. Circulation, 2002, 106, 484-490.	1.6	412
35	Transmission of Atherosclerosis Susceptibility with Gut Microbial Transplantation. Journal of Biological Chemistry, 2015, 290, 5647-5660.	1.6	400
36	Identification of 5-Lipoxygenase as a Major Gene Contributing to Atherosclerosis Susceptibility in Mice. Circulation Research, 2002, 91, 120-126.	2.0	387

#	Article	IF	CITATIONS
37	Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nature Medicine, 2018, 24, 1407-1417.	15.2	383
38	Combined Serum Paraoxonase Knockout/Apolipoprotein E Knockout Mice Exhibit Increased Lipoprotein Oxidation and Atherosclerosis. Journal of Biological Chemistry, 2000, 275, 17527-17535.	1.6	371
39	The Unfolded Protein Response Is an Important Regulator of Inflammatory Genes in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2490-2496.	1.1	320
40	Human Paraoxonase-3 Is an HDL-Associated Enzyme With Biological Activity Similar to Paraoxonase-1 Protein but Is Not Regulated by Oxidized Lipids. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 542-547.	1.1	319
41	Atherosclerosis: Recent developments. Cell, 2022, 185, 1630-1645.	13.5	311
42	Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nature Microbiology, 2018, 3, 1461-1471.	5.9	310
43	The TMAO-Generating Enzyme Flavin Monooxygenase 3 Is a Central Regulator of Cholesterol Balance. Cell Reports, 2015, 10, 326-338.	2.9	307
44	Dosage compensation is less effective in birds than in mammals. Journal of Biology, 2007, 6, 2.	2.7	304
45	Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12741-12746.	3.3	303
46	A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Research, 2010, 20, 281-290.	2.4	299
47	Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nature Genetics, 2004, 36, 371-376.	9.4	295
48	Increased atherosclerosis in myeloperoxidase-deficient mice. Journal of Clinical Investigation, 2001, 107, 419-430.	3.9	292
49	Metabolic syndrome: from epidemiology to systems biology. Nature Reviews Genetics, 2008, 9, 819-830.	7.7	289
50	Genetic and environmental control of host-gut microbiota interactions. Genome Research, 2015, 25, 1558-1569.	2.4	288
51	Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition. Cell Host and Microbe, 2019, 26, 252-264.e10.	5.1	274
52	GENETICS OF ATHEROSCLEROSIS. Annual Review of Genomics and Human Genetics, 2004, 5, 189-218.	2.5	265
53	Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e131-e157.	1.1	262
54	Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nature Genetics, 2009, 41, 415-423.	9.4	257

#	Article	IF	CITATIONS
55	CHAC1/MGC4504 Is a Novel Proapoptotic Component of the Unfolded Protein Response, Downstream of the ATF4-ATF3-CHOP Cascade. Journal of Immunology, 2009, 182, 466-476.	0.4	255
56	Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. Journal of Lipid Research, 2015, 56, 22-37.	2.0	254
57	Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nature Genetics, 2017, 49, 1346-1353.	9.4	252
58	Cis-acting expression quantitative trait loci in mice. Genome Research, 2005, 15, 681-691.	2.4	246
59	Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biology, 2017, 18, 70.	3.8	245
60	Ligand activation of LXRÎ ² reverses atherosclerosis and cellular cholesterol overload in mice lacking LXRα and apoE. Journal of Clinical Investigation, 2007, 117, 2337-2346.	3.9	244
61	Role of Group II Secretory Phospholipase A ₂ in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1284-1290.	1.1	236
62	Elucidating the Role of Gonadal Hormones in Sexually Dimorphic Gene Coexpression Networks. Endocrinology, 2009, 150, 1235-1249.	1.4	224
63	Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nature Genetics, 2005, 37, 1224-1233.	9.4	210
64	Targeting BCAA Catabolism to Treat Obesity-Associated Insulin Resistance. Diabetes, 2019, 68, 1730-1746.	0.3	201
65	Endothelial Responses to Oxidized Lipoproteins Determine Genetic Susceptibility to Atherosclerosis in Mice. Circulation, 2000, 102, 75-81.	1.6	196
66	Genetic Architecture of Insulin Resistance in the Mouse. Cell Metabolism, 2015, 21, 334-347.	7.2	196
67	The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue. Cell Reports, 2017, 19, 2451-2461.	2.9	194
68	Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease. PLoS Genetics, 2014, 10, e1004502.	1.5	192
69	Heme Oxygenase-1 Expression in Macrophages Plays a Beneficial Role in Atherosclerosis. Circulation Research, 2007, 100, 1703-1711.	2.0	179
70	Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Science Translational Medicine, 2016, 8, 334ra54.	5.8	174
71	Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nature Medicine, 2018, 24, 304-312.	15.2	171
72	Genetic Basis of Atherosclerosis: Part I. Circulation, 2004, 110, 1868-1873.	1.6	166

#	Article	IF	CITATIONS
73	A multi-tissue full lifespan epigenetic clock for mice. Aging, 2018, 10, 2832-2854.	1.4	166
74	Genetic and Genomic Analysis of a Fat Mass Trait with Complex Inheritance Reveals Marked Sex Specificity. PLoS Genetics, 2006, 2, e15.	1.5	161
75	Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis. Cell Metabolism, 2017, 25, 248-261.	7.2	161
76	FXR Deficiency Causes Reduced Atherosclerosis in Ldlr â^'/â^' Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2316-2321.	1.1	153
77	Paraoxonase-2 Deficiency Aggravates Atherosclerosis in Mice Despite Lower Apolipoprotein-B-containing Lipoproteins. Journal of Biological Chemistry, 2006, 281, 29491-29500.	1.6	149
78	The Metabolic Syndrome in Men study: a resource for studies of metabolic and cardiovascular diseases. Journal of Lipid Research, 2017, 58, 481-493.	2.0	147
79	NF-E2–Related Factor 2 Promotes Atherosclerosis by Effects on Plasma Lipoproteins and Cholesterol Transport That Overshadow Antioxidant Protection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 58-66.	1.1	146
80	The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. Journal of Lipid Research, 2016, 57, 925-942.	2.0	143
81	Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nature Genetics, 2018, 50, 572-580.	9.4	143
82	Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. ELife, 2017, 6, .	2.8	142
83	IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell, 2018, 172, 218-233.e17.	13.5	142
84	Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits. American Journal of Human Genetics, 2017, 100, 428-443.	2.6	141
85	Determinants of Atherosclerosis Susceptibility in the C3H and C57BL/6 Mouse Model. Circulation Research, 2000, 86, 1078-1084.	2.0	138
86	Using genetic markers to orient the edges in quantitative trait networks: The NEO software. BMC Systems Biology, 2008, 2, 34.	3.0	138
87	Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mammalian Genome, 2012, 23, 680-692.	1.0	134
88	Unraveling Inflammatory Responses using Systems Genetics and Gene-Environment Interactions in Macrophages. Cell, 2012, 151, 658-670.	13.5	134
89	Integration of Multi-omics Data from Mouse Diversity Panel Highlights Mitochondrial Dysfunction in Non-alcoholic Fatty Liver Disease. Cell Systems, 2018, 6, 103-115.e7.	2.9	124
90	Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains. PLoS Genetics, 2015, 11, e1005711.	1.5	124

#	Article	IF	CITATIONS
91	Cardiovascular Networks. Circulation, 2010, 121, 157-170.	1.6	123
92	Association Between Serum Amyloid A Proteins and Coronary Artery Disease. Circulation, 1997, 96, 2914-2919.	1.6	123
93	Identification of Abcc6 as the major causal gene for dystrophic cardiac calcification in mice through integrative genomics. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4530-4535.	3.3	122
94	Microbial Transplantation With Human Gut Commensals Containing CutC Is Sufficient to Transmit Enhanced Platelet Reactivity and Thrombosis Potential. Circulation Research, 2018, 123, 1164-1176.	2.0	122
95	Cross-Tissue Regulatory Gene Networks in Coronary Artery Disease. Cell Systems, 2016, 2, 196-208.	2.9	120
96	Comparative Genome-Wide Association Studies in Mice and Humans for Trimethylamine <i>N</i> -Oxide, a Proatherogenic Metabolite of Choline and <scp>l</scp> -Carnitine. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1307-1313.	1.1	119
97	Network for Activation of Human Endothelial Cells by Oxidized Phospholipids. Circulation Research, 2011, 109, e27-41.	2.0	117
98	The apolipoprotein(a) gene resides on human chromosome 6q26?27, in close proximity to the homologous gene for plasminogen. Human Genetics, 1988, 79, 352-6.	1.8	116
99	Genome Scan for Blood Pressure in Dutch Dyslipidemic Families Reveals Linkage to a Locus on Chromosome 4p. Hypertension, 2001, 38, 773-778.	1.3	116
100	Natural variation of macrophage activation as disease-relevant phenotype predictive of inflammation and cancer survival. Nature Communications, 2017, 8, 16041.	5.8	113
101	Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell, 2020, 182, 545-562.e23.	13.5	113
102	Identification of Pathways for Atherosclerosis in Mice. Circulation Research, 2007, 101, e11-30.	2.0	108
103	Mouse Genome-Wide Association and Systems Genetics Identify Asxl2 As a Regulator of Bone Mineral Density and Osteoclastogenesis. PLoS Genetics, 2011, 7, e1002038.	1.5	108
104	Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells. Genome Biology, 2007, 8, R149.	13.9	107
105	Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC Genomics, 2016, 17, 874.	1.2	106
106	Systems Genetics Analysis of Gene-by-Environment Interactions in Human Cells. American Journal of Human Genetics, 2010, 86, 399-410.	2.6	103
107	<i>RIPK1</i> Expression Associates With Inflammation in Early Atherosclerosis in Humans and Can Be Therapeutically Silenced to Reduce NF-κB Activation and Atherogenesis in Mice. Circulation, 2021, 143, 163-177.	1.6	102
108	Prediction of Causal Candidate Genes in Coronary Artery Disease Loci. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2207-2217.	1.1	101

#	Article	IF	CITATIONS
109	An integrative systems genetic analysis of mammalian lipid metabolism. Nature, 2019, 567, 187-193.	13.7	101
110	Mapping a gene for combined hyperlipidaemia in a mutant mouse strain. Nature Genetics, 1998, 18, 374-377.	9.4	98
111	Epigenome-Wide Association of Liver Methylation Patterns and Complex Metabolic Traits in Mice. Cell Metabolism, 2015, 21, 905-917.	7.2	98
112	Expression Quantitative Trait Loci: Replication, Tissue- and Sex-Specificity in Mice. Genetics, 2010, 185, 1059-1068.	1.2	97
113	Genetics of atherosclerosis. Trends in Genetics, 2012, 28, 267-275.	2.9	97
114	The genetic architecture of NAFLD among inbred strains of mice. ELife, 2015, 4, e05607.	2.8	96
115	Decreased Obesity and Atherosclerosis in Human Paraoxonase 3 Transgenic Mice. Circulation Research, 2007, 100, 1200-1207.	2.0	95
116	Blocking Very Late Antigen-4 Integrin Decreases Leukocyte Entry and Fatty Streak Formation in Mice Fed an Atherogenic Diet. Circulation Research, 1999, 84, 345-351.	2.0	93
117	Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease. ELife, 2019, 8, .	2.8	93
118	Understanding the Sexome: Measuring and Reporting Sex Differences in Gene Systems. Endocrinology, 2012, 153, 2551-2555.	1.4	92
119	Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. Journal of Experimental Medicine, 2015, 212, 2147-2163.	4.2	86
120	Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification. Cell Stem Cell, 2017, 20, 218-232.e5.	5.2	86
121	Functional Characterization of the <i>GUCY1A3</i> Coronary Artery Disease Risk Locus. Circulation, 2017, 136, 476-489.	1.6	84
122	Genetic Locus in Mice That Blocks Development of Atherosclerosis Despite Extreme Hyperlipidemia. Circulation Research, 2001, 89, 125-130.	2.0	83
123	The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle. Molecular Metabolism, 2019, 21, 51-67.	3.0	83
124	Shared genetic regulatory networks for cardiovascular disease and type 2 diabetes in multiple populations of diverse ethnicities in the United States. PLoS Genetics, 2017, 13, e1007040.	1.5	82
125	The allelic structure of common disease. Human Molecular Genetics, 2002, 11, 2455-2461.	1.4	80
126	Granulocyte Macrophage Colony-Stimulating Factor Regulates Dendritic Cell Content of Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 621-627.	1.1	80

#	Article	IF	CITATIONS
127	A treasure trove for lipoprotein biology. Nature Genetics, 2008, 40, 129-130.	9.4	79
128	Gene-by-Sex Interactions in Mitochondrial Functions and Cardio-Metabolic Traits. Cell Metabolism, 2019, 29, 932-949.e4.	7.2	79
129	Sex differences in metabolism and cardiometabolic disorders. Current Opinion in Lipidology, 2018, 29, 404-410.	1.2	78
130	Mechanosensitive PPAP2B Regulates Endothelial Responses to Atherorelevant Hemodynamic Forces. Circulation Research, 2015, 117, e41-e53.	2.0	75
131	Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS. Nature Communications, 2018, 9, 1512.	5.8	75
132	Genetic Basis of Atherosclerosis: Part II. Circulation, 2004, 110, 2066-2071.	1.6	74
133	The roles of PON1 and PON2 in cardiovascular disease and innate immunity. Current Opinion in Lipidology, 2009, 20, 288-292.	1.2	74
134	Systems-based approaches to cardiovascular disease. Nature Reviews Cardiology, 2012, 9, 172-184.	6.1	74
135	Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice. Mammalian Genome, 2006, 17, 466-479.	1.0	72
136	Apolipoprotein All Is a Regulator of Very Low Density Lipoprotein Metabolism and Insulin Resistance. Journal of Biological Chemistry, 2008, 283, 11633-11644.	1.6	72
137	Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits. Human Molecular Genetics, 2013, 22, 3023-3037.	1.4	72
138	Gene networks associated with conditional fear in mice identified using a systems genetics approach. BMC Systems Biology, 2011, 5, 43.	3.0	71
139	Mapping Genetic Contributions to Cardiac Pathology Induced by Beta-Adrenergic Stimulation in Mice. Circulation: Cardiovascular Genetics, 2015, 8, 40-49.	5.1	71
140	Genomic analysis of metabolic pathway gene expression in mice. Genome Biology, 2005, 6, R59.	13.9	70
141	Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model. PLoS Genetics, 2016, 12, e1006038.	1.5	70
142	Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio, 2018, 9, .	1.8	70
143	Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice. Scientific Reports, 2021, 11, 518.	1.6	70
144	Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Circulation Research, 2017, 121, e53-e79.	2.0	69

#	Article	IF	CITATIONS
145	Open Chromatin Profiling in Mice Livers Reveals Unique Chromatin Variations Induced by High Fat Diet. Journal of Biological Chemistry, 2014, 289, 23557-23567.	1.6	67
146	Unraveling the environmental and genetic interactions inÂatherosclerosis: Central role of the gut microbiota. Atherosclerosis, 2015, 241, 387-399.	0.4	67
147	A comparison between whole transcript and 3' RNA sequencing methods using Kapa and Lexogen library preparation methods. BMC Genomics, 2019, 20, 9.	1.2	66
148	Reducing Macrophage Proteoglycan Sulfation Increases Atherosclerosis and Obesity through Enhanced Type I Interferon Signaling. Cell Metabolism, 2014, 20, 813-826.	7.2	65
149	Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biology of Sex Differences, 2018, 9, 46.	1.8	65
150	Genome-Wide Association Study Identifies Nox3 as a Critical Gene for Susceptibility to Noise-Induced Hearing Loss. PLoS Genetics, 2015, 11, e1005094.	1.5	64
151	Estrogen receptor $\hat{I}\pm$ controls metabolism in white and brown adipocytes by regulating <i>Polg1</i> and mitochondrial remodeling. Science Translational Medicine, 2020, 12, .	5.8	64
152	Arterial colony stimulating factor-1 influences atherosclerotic lesions by regulating monocyte migration and apoptosis. Journal of Lipid Research, 2010, 51, 1962-1970.	2.0	62
153	Genetic loci for diet-induced atherosclerotic lesions and plasma lipids in mice. Mammalian Genome, 2003, 14, 464-471.	1.0	61
154	Estrogen Receptor (ER)α-regulated Lipocalin 2 Expression in Adipose Tissue Links Obesity with Breast Cancer Progression. Journal of Biological Chemistry, 2015, 290, 5566-5581.	1.6	61
155	Association between the gut microbiome and atherosclerosis. Nature Reviews Cardiology, 2017, 14, 699-700.	6.1	60
156	A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism. Cell Metabolism, 2018, 27, 1138-1155.e6.	7.2	58
157	The Problem of Passenger Genes in Transgenic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2100-2103.	1.1	57
158	Allele-specific expression and eQTL analysis in mouse adipose tissue. BMC Genomics, 2014, 15, 471.	1.2	57
159	Metabolic reprogramming and epigenetic changes of vital organs in SARS-CoV-2–induced systemic toxicity. JCl Insight, 2021, 6, .	2.3	57
160	Genetic Regulation of Fibroblast Activation and Proliferation in Cardiac Fibrosis. Circulation, 2018, 138, 1224-1235.	1.6	56
161	Genetic regulation of mouse liver metabolite levels. Molecular Systems Biology, 2014, 10, 730.	3.2	55
162	Impaired Development of Atherosclerosis in <i>Abcg1</i> ^{â^'/â^'} <i>Apoe</i> ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1174-1180.	1.1	53

#	Article	IF	CITATIONS
163	A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear. Hearing Research, 2016, 333, 266-274.	0.9	51
164	The Genetic Architecture of Dietâ€Induced Hepatic Fibrosis in Mice. Hepatology, 2018, 68, 2182-2196.	3.6	51
165	A mechanistic framework for cardiometabolic and coronary artery diseases. , 2022, 1, 85-100.		51
166	Multiple Hepatic Regulatory Variants at the GALNT2 GWAS Locus Associated with High-Density Lipoprotein Cholesterol. American Journal of Human Genetics, 2015, 97, 801-815.	2.6	49
167	Identification and validation of genes affecting aortic lesions in mice. Journal of Clinical Investigation, 2010, 120, 2414-2422.	3.9	49
168	Using Mice to Dissect Genetic Factors in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1501-1509.	1.1	48
169	Systems Genetic Analysis of Osteoblast-Lineage Cells. PLoS Genetics, 2012, 8, e1003150.	1.5	48
170	Lipin-1 and lipin-3 together determine adiposity in vivo. Molecular Metabolism, 2014, 3, 145-154.	3.0	48
171	XX sex chromosome complement promotes atherosclerosis in mice. Nature Communications, 2019, 10, 2631.	5.8	48
172	Locus for Elevated Apolipoprotein B Levels on Chromosome 1p31 in Families With Familial Combined Hyperlipidemia. Circulation Research, 2002, 90, 926-931.	2.0	46
173	Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice. PLoS Genetics, 2014, 10, e1004022.	1.5	46
174	Genetic and hormonal control of hepatic steatosis in female and male mice. Journal of Lipid Research, 2017, 58, 178-187.	2.0	46
175	Targeted deletion of Tcf7l2 in adipocytes promotes adipocyte hypertrophy and impaired glucose metabolism. Molecular Metabolism, 2019, 24, 44-63.	3.0	46
176	Quantitative Trait Locus Analysis of Atherosclerosis in an Intercross Between C57BL/6 and C3H Mice Carrying the Mutant Apolipoprotein E Gene. Genetics, 2006, 172, 1799-1807.	1.2	45
177	Adipose Tissue Gene Expression Associations Reveal Hundreds of Candidate Genes for Cardiometabolic Traits. American Journal of Human Genetics, 2019, 105, 773-787.	2.6	45
178	Contribution of Gene Regulatory Networks to Heritability of CoronaryÂArtery Disease. Journal of the American College of Cardiology, 2019, 73, 2946-2957.	1.2	45
179	Testing the Iron Hypothesis in a Mouse Model of Atherosclerosis. Cell Reports, 2013, 5, 1436-1442.	2.9	44
180	Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nature Communications, 2018, 9, 2292.	5.8	44

#	Article	IF	CITATIONS
181	Association of serum HDL-cholesterol and apolipoprotein A1 levels with risk of severe SARS-CoV-2 infection. Journal of Lipid Research, 2021, 62, 100061.	2.0	44
182	Paradoxical effect on atherosclerosis of hormone-sensitive lipase overexpression in macrophages. Journal of Lipid Research, 1999, 40, 397-404.	2.0	44
183	Analysis of Allele-Specific Expression in Mouse Liver by RNA-Seq: A Comparison With <i>Cis</i> -eQTL Identified Using Genetic Linkage. Genetics, 2013, 195, 1157-1166.	1.2	43
184	Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway. Journal of Lipid Research, 2016, 57, 246-257.	2.0	43
185	Topological Arrangement of Cardiac Fibroblasts Regulates Cellular Plasticity. Circulation Research, 2018, 123, 73-85.	2.0	42
186	Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. Environment International, 2021, 146, 106260.	4.8	42
187	Association of TERC and OBFC1 Haplotypes with Mean Leukocyte Telomere Length and Risk for Coronary Heart Disease. PLoS ONE, 2013, 8, e83122.	1.1	42
188	β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. Journal of Clinical Investigation, 2022, 132, .	3.9	42
189	New <i>Dyscalc</i> loci for myocardial cell necrosis and calcification (dystrophic cardiac calcinosis) in mice. Physiological Genomics, 2001, 6, 137-144.	1.0	41
190	Thematic review series: The Pathogenesis of Atherosclerosis. Toward a biological network for atherosclerosis. Journal of Lipid Research, 2004, 45, 1793-1805.	2.0	41
191	Hyodeoxycholic acid improves HDL function and inhibits atherosclerotic lesion formation in LDLRâ€knockout mice. FASEB Journal, 2013, 27, 3805-3817.	0.2	41
192	Sex-specific metabolic functions of adipose Lipocalin-2. Molecular Metabolism, 2019, 30, 30-47.	3.0	41
193	Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution. Human Molecular Genetics, 2019, 28, 4161-4172.	1.4	41
194	Genetic Deficiency of Flavin-Containing Monooxygenase 3 (<i>Fmo3</i>) Protects Against Thrombosis but Has Only a Minor Effect on Plasma Lipid Levels—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1045-1054.	1.1	41
195	Imputing Phenotypes for Genome-wide Association Studies. American Journal of Human Genetics, 2016, 99, 89-103.	2.6	40
196	DNA Methylation Indicates Susceptibility to Isoproterenol-Induced Cardiac Pathology and Is Associated With Chromatin States. Circulation Research, 2016, 118, 786-797.	2.0	40
197	Diet, gonadal sex, and sex chromosome complement influence white adipose tissue miRNA expression. BMC Genomics, 2017, 18, 89.	1.2	40
198	Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity. Nature Metabolism, 2020, 2, 974-988.	5.1	40

#	Article	IF	CITATIONS
199	Systems Genetics Approach Identifies Gene Pathways and Adamts2 as Drivers of Isoproterenol-Induced Cardiac Hypertrophy and Cardiomyopathy in Mice. Cell Systems, 2017, 4, 121-128.e4.	2.9	39
200	Loss of G2A promotes macrophage accumulation in atherosclerotic lesions of low density lipoprotein receptor-deficient mice. Journal of Lipid Research, 2005, 46, 1405-1415.	2.0	38
201	Mapping, Genetic Isolation, and Characterization of Genetic Loci That Determine Resistance to Atherosclerosis in C3H Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2671-2676.	1.1	38
202	Systems biology asks new questions about sex differences. Trends in Endocrinology and Metabolism, 2009, 20, 471-476.	3.1	38
203	Systems genetics of susceptibility to obesity-induced diabetes in mice. Physiological Genomics, 2012, 44, 1-13.	1.0	38
204	PON3 knockout mice are susceptible to obesity, gallstone formation, and atherosclerosis. FASEB Journal, 2015, 29, 1185-1197.	0.2	38
205	Future Translational Applications From the Contemporary Genomics Era. Circulation, 2015, 131, 1715-1736.	1.6	38
206	Epigenome-wide association in adipose tissue from the METSIM cohort. Human Molecular Genetics, 2018, 27, 1830-1846.	1.4	38
207	Local M-CSF (Macrophage Colony-Stimulating Factor) Expression Regulates Macrophage Proliferation and Apoptosis in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 220-233.	1.1	38
208	Roles of Macrophages in Atherogenesis. Frontiers in Pharmacology, 2021, 12, 785220.	1.6	38
209	High-Density Genotypes of Inbred Mouse Strains: Improved Power and Precision of Association Mapping. G3: Genes, Genomes, Genetics, 2015, 5, 2021-2026.	0.8	37
210	Chromatin variation associated with liver metabolism is mediated by transposable elements. Epigenetics and Chromatin, 2016, 9, 28.	1.8	37
211	Liver Pyruvate Kinase Promotes NAFLD/NASH in Both Mice and Humans in a Sex-Specific Manner. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 389-406.	2.3	37
212	Complex Inheritance of the 5-Lipoxygenase Locus Influencing Atherosclerosis in Mice. Genetics, 2006, 173, 943-951.	1.2	36
213	Quantitative Trait Locus Mapping and Identification of Zhx2 as a Novel Regulator of Plasma Lipid Metabolism. Circulation: Cardiovascular Genetics, 2010, 3, 60-67.	5.1	36
214	FAM13A affects body fat distribution and adipocyte function. Nature Communications, 2020, 11, 1465.	5.8	36
215	Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. Nature, 2021, 599, 296-301.	13.7	36
216	Oxidized lipoproteins influence gene expression by causing oxidative stress and activating the transcription factor NF-κB. Biochemical Society Transactions, 1993, 21, 651-655.	1.6	35

#	Article	IF	CITATIONS
217	Paraoxonase-2 Modulates Stress Response of Endothelial Cells to Oxidized Phospholipids and a Bacterial Quorum–Sensing Molecule. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2624-2633.	1.1	35
218	Systems genetics applications in metabolism research. Nature Metabolism, 2019, 1, 1038-1050.	5.1	35
219	An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease. Nature Communications, 2021, 12, 547.	5.8	35
220	Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes. ELife, 2016, 5, .	2.8	35
221	Genome-wide association mapping of blood cell traits in mice. Mammalian Genome, 2013, 24, 105-118.	1.0	34
222	RIPK1 gene variants associate with obesity in humans and can be therapeutically silenced to reduce obesity in mice. Nature Metabolism, 2020, 2, 1113-1125.	5.1	34
223	Lysophospholipid acylation modulates plasma membrane lipid organization and insulin sensitivity in skeletal muscle. Journal of Clinical Investigation, 2021, 131, .	3.9	34
224	Regulation of NF-κB signaling by oxidized glycerophospholipid and IL-1β induced miRs-21-3p and -27a-5p in human aortic endothelial cells. Journal of Lipid Research, 2015, 56, 38-50.	2.0	33
225	Sex-specific genetic regulation of adipose mitochondria and metabolic syndrome by Ndufv2. Nature Metabolism, 2021, 3, 1552-1568.	5.1	32
226	Genetic Factors in Cardiovascular Disease. Trends in Cardiovascular Medicine, 2003, 13, 309-316.	2.3	31
227	Genome-wide screening for genetic loci associated with noise-induced hearing loss. Mammalian Genome, 2009, 20, 207-213.	1.0	31
228	Genome-Wide Association Study for Age-Related Hearing Loss (AHL) in the Mouse: A Meta-Analysis. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 335-352.	0.9	31
229	Genetic Backgrounds but Not Sizes of Atherosclerotic Lesions Determine Medial Destruction in the Aortic Root of Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1901-1906.	1.1	30
230	Upstream transcription factor 1 influences plasma lipid and metabolic traits in mice. Human Molecular Genetics, 2010, 19, 597-608.	1.4	30
231	Intergenerational genomic DNA methylation patterns in mouse hybrid strains. Genome Biology, 2014, 15, R68.	13.9	30
232	Reciprocal Regulation of the Cardiac Epigenome by Chromatin Structural Proteins Hmgb and Ctcf. Journal of Biological Chemistry, 2016, 291, 15428-15446.	1.6	30
233	Regulator of Calcineurin 1 helps coordinate wholeâ€body metabolism and thermogenesis. EMBO Reports, 2018, 19, .	2.0	30
234	Diesel Exhaust Induces Mitochondrial Dysfunction, Hyperlipidemia, and Liver Steatosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1776-1786.	1.1	30

#	Article	IF	CITATIONS
235	Sex differences in heart mitochondria regulate diastolic dysfunction. Nature Communications, 2022, 13, .	5.8	30
236	Human apolipoprotein B: partial amino acid sequence. FEBS Letters, 1984, 170, 105-108.	1.3	29
237	Gene Expression Analyses of Mouse Aortic Endothelium in Response to Atherogenic Stimuli. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2509-2517.	1.1	29
238	The State of Systems Genetics in 2017. Cell Systems, 2017, 4, 7-15.	2.9	29
239	Genetics of common forms of heart failure. Current Opinion in Cardiology, 2015, 30, 222-227.	0.8	28
240	Transcription Factor MAFF (MAF Basic Leucine Zipper Transcription Factor F) Regulates an Atherosclerosis Relevant Network Connecting Inflammation and Cholesterol Metabolism. Circulation, 2021, 143, 1809-1823.	1.6	28
241	Genetic loci influencing natural variations in femoral bone morphometry in mice. Journal of Orthopaedic Research, 2001, 19, 511-517.	1.2	27
242	ABCB10 exports mitochondrial biliverdin, driving metabolic maladaptation in obesity. Science Translational Medicine, 2021, 13, .	5.8	27
243	Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms. ELife, 2022, 11, .	2.8	27
244	Atherosclerosis in C3H/HeJ Mice Reconstituted With Apolipoprotein E-Null Bone Marrow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 650-655.	1.1	26
245	Hyplip2 , a New Gene for Combined Hyperlipidemia and Increased Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1928-1934.	1.1	26
246	Efficient and Accurate Multiple-Phenotype Regression Method for High Dimensional Data Considering Population Structure. Genetics, 2016, 204, 1379-1390.	1.2	26
247	Genetic, dietary, and sex-specific regulation of hepatic ceramides and the relationship between hepatic ceramides and IR [S]. Journal of Lipid Research, 2018, 59, 1164-1174.	2.0	26
248	Human apolipoprotein B: Chromosomal mapping and DNA polymorphisms of hepatic and intestinal species. Somatic Cell and Molecular Genetics, 1986, 12, 245-254.	0.7	25
249	Genetic contributions to quantitative lipoprotein traits associated with coronary artery disease: Analysis of a large pedigree from the Bogalusa heart study. American Journal of Medical Genetics Part A, 1993, 47, 875-883.	2.4	25
250	Deletion of MLIP (Muscle-enriched A-type Lamin-interacting Protein) Leads to Cardiac Hyperactivation of Akt/Mammalian Target of Rapamycin (mTOR) and Impaired Cardiac Adaptation. Journal of Biological Chemistry, 2015, 290, 26699-26714.	1.6	25
251	Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function. Cardiovascular Research, 2016, 112, 702-713.	1.8	25
252	The Genetic Architecture of Noise-Induced Hearing Loss: Evidence for a Gene-by-Environment Interaction. G3: Genes, Genomes, Genetics, 2016, 6, 3219-3228.	0.8	24

#	Article	IF	CITATIONS
253	Transcription Factor <i>Zhx2</i> Deficiency Reduces Atherosclerosis and Promotes Macrophage Apoptosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2016-2027.	1.1	23
254	Conducting the metabolic syndrome orchestra. Nature Genetics, 2011, 43, 506-508.	9.4	22
255	Maximal information component analysis: a novel non-linear network analysis method. Frontiers in Genetics, 2013, 4, 28.	1.1	22
256	A personalized, multiomics approach identifies genes involved in cardiac hypertrophy and heart failure. Npj Systems Biology and Applications, 2018, 4, 12.	1.4	22
257	Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure. Nature Communications, 2019, 10, 2760.	5.8	22
258	The Ca2+ transient as a feedback sensor controlling cardiomyocyte ionic conductances in mouse populations. ELife, 2018, 7, .	2.8	22
259	Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes. Basic Research in Cardiology, 2022, 117, 6.	2.5	22
260	Translation of mRNA for human granulocyte–macrophage colony stimulating factor. Nature, 1982, 298, 75-77.	13.7	21
261	Transgenic Expression of Dominant-Active IDOL in Liver Causes Diet-Induced Hypercholesterolemia and Atherosclerosis in Mice. Circulation Research, 2014, 115, 442-449.	2.0	21
262	The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice. Stem Cell Reports, 2015, 5, 125-138.	2.3	21
263	Genomewide Association Study Identifies Cxcl Family Members as Partial Mediators of LPS-Induced Periodontitis. Journal of Bone and Mineral Research, 2018, 33, 1450-1463.	3.1	21
264	Rosuvastatin Prevents the Exacerbation of Atherosclerosis in Ligature-Induced Periodontal Disease Mouse Model. Scientific Reports, 2020, 10, 6383.	1.6	20
265	Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease. American Journal of Human Genetics, 2021, 108, 411-430.	2.6	20
266	Placental genomics mediates genetic associations with complex health traits and disease. Nature Communications, 2022, 13, 706.	5.8	20
267	<i>Trans</i> -ancestry Fine Mapping and Molecular Assays Identify Regulatory Variants at the <i>ANGPTL8</i> HDL-C GWAS Locus. G3: Genes, Genomes, Genetics, 2017, 7, 3217-3227.	0.8	19
268	PON2 Deficiency Leads to Increased Susceptibility to Diet-Induced Obesity. Antioxidants, 2019, 8, 19.	2.2	19
269	Genetic control of the mouse HDL proteome defines HDL traits, function, and heterogeneity. Journal of Lipid Research, 2019, 60, 594-608.	2.0	19
270	The E3 ligase MARCH5 is a PPARÎ ³ target gene that regulates mitochondria and metabolism in adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E293-E304.	1.8	19

#	Article	IF	CITATIONS
271	The Genetic Architecture of Carbon Tetrachloride-Induced Liver Fibrosis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 199-220.	2.3	19
272	Fine mapping of Hyplip1 and the human homolog, a potential locus for FCHL. Mammalian Genome, 2001, 12, 238-245.	1.0	17
273	Combined QTL and Selective Sweep Mappings with Coding SNP Annotation and <i>cis</i> -eQTL Analysis Revealed <i>PARK2</i> and <i>JAG2</i> as New Candidate Genes for Adiposity Regulation. G3: Genes, Genomes, Genetics, 2015, 5, 517-529.	0.8	17
274	Discovering Single Nucleotide Polymorphisms Regulating Human Gene Expression Using Allele Specific Expression from RNA-seq Data. Genetics, 2016, 204, 1057-1064.	1.2	17
275	Genetic Regulation of Atherosclerotic Plaque Size and Morphology in the Innominate Artery of Hyperlipidemic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 348-355.	1.1	16
276	The Genetic Architecture of Hearing Impairment in Mice: Evidence for Frequency-Specific Genetic Determinants. G3: Genes, Genomes, Genetics, 2015, 5, 2329-2339.	0.8	16
277	Genetic regulation of liver lipids in a mouse model of insulin resistance and hepatic steatosis. Molecular Systems Biology, 2021, 17, e9684.	3.2	16
278	Cardiomyocytes disrupt pyrimidine biosynthesis in nonmyocytes to regulate heart repair. Journal of Clinical Investigation, 2022, 132, .	3.9	16
279	The Nutritional Supplement L-Alpha Clycerylphosphorylcholine Promotes Atherosclerosis. International Journal of Molecular Sciences, 2021, 22, 13477.	1.8	16
280	Altered branched-chain α-keto acid metabolism is a feature of NAFLD in individuals with severe obesity. JCI Insight, 2022, 7, .	2.3	16
281	Disruption of the Aortic Elastic Lamina and Medial Calcification Share Genetic Determinants in Mice. Circulation: Cardiovascular Genetics, 2009, 2, 573-582.	5.1	15
282	Preservation Analysis of Macrophage Gene Coexpression Between Human and Mouse Identifies PARK2 as a Genetically Controlled Master Regulator of Oxidative Phosphorylation in Humans. G3: Genes, Genomes, Genetics, 2016, 6, 3361-3371.	0.8	15
283	Elevated Adiponectin Levels Suppress Perivascular and Aortic Inflammation and Prevent Angll-induced Advanced Abdominal Aortic Aneurysms. Scientific Reports, 2016, 6, 31414.	1.6	15
284	Isoproterenol-Induced Cardiac Diastolic Dysfunction in Mice: A Systems Genetics Analysis. Frontiers in Cardiovascular Medicine, 2019, 6, 100.	1.1	15
285	Host Genetic Background and Gut Microbiota Contribute to Differential Metabolic Responses to Fructose Consumption in Mice. Journal of Nutrition, 2020, 150, 2716-2728.	1.3	15
286	Increasing Association Mapping Power and Resolution in Mouse Genetic Studies Through the Use of Meta-Analysis for Structured Populations. Genetics, 2012, 191, 959-967.	1.2	14
287	Systems Genetics Approach to Biomarker Discovery: GPNMB and Heart Failure in Mice and Humans. G3: Genes, Genomes, Genetics, 2018, 8, 3499-3506.	0.8	14
288	Noggin depletion in adipocytes promotes obesity in mice. Molecular Metabolism, 2019, 25, 50-63.	3.0	14

#	Article	IF	CITATIONS
289	Fecal Microbiome Composition Does Not Predict Dietâ€Induced TMAO Production in Healthy Adults. Journal of the American Heart Association, 2021, 10, e021934.	1.6	14
290	Transgenic tomatoes expressing the 6F peptide and ezetimibe prevent diet-induced increases of IFN-β and cholesterol 25-hydroxylase in jejunum. Journal of Lipid Research, 2017, 58, 1636-1647.	2.0	13
291	Machine Learning Reveals Time-Varying Microbial Predictors with Complex Effects on Glucose Regulation. MSystems, 2021, 6, .	1.7	13
292	Oxy210, a novel inhibitor of hedgehog and TGFâ€Î² signalling, ameliorates hepatic fibrosis and hypercholesterolemia in mice. Endocrinology, Diabetes and Metabolism, 2021, 4, e00296.	1.0	13
293	The Systems Genetics Resource: A Web Application to Mine Global Data for Complex Disease Traits. Frontiers in Genetics, 2013, 4, 84.	1.1	12
294	A systems genetics approach identifiesTrp53inp2as a link between cardiomyocyte glucose utilization and hypertrophic response. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H728-H741.	1.5	12
295	CHD and Atherosclerosis: Human Epidemiological Studies and Transgenic Mouse Models. , 2002, , 93-123.		12
296	Gene-Environment Interactions for Cardiovascular Disease. Current Atherosclerosis Reports, 2021, 23, 75.	2.0	12
297	Understanding atherosclerosis through mouse genetics. Current Opinion in Lipidology, 2002, 13, 181-189.	1.2	11
298	A systems-based framework for understanding complex metabolic and cardiovascular disorders. Journal of Lipid Research, 2009, 50, S358-S363.	2.0	11
299	A vicious cycle in atherosclerosis. Cell, 2021, 184, 1139-1141.	13.5	11
300	Diesel exhaust particles dysregulate multiple immunological pathways in murine macrophages: Lessons from microarray and scRNA-seq technologies. Archives of Biochemistry and Biophysics, 2019, 678, 108116.	1.4	10
301	Collaborative interactions of heterogenous ribonucleoproteins contribute to transcriptional regulation of sterol metabolism in mice. Nature Communications, 2020, 11, 984.	5.8	10
302	Sexually Dimorphic Relationships Among Saa3 (Serum Amyloid A3), Inflammation, and Cholesterol Metabolism Modulate Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e299-e313.	1.1	10
303	Genome-Wide Association Study Identifies a Functional <i>SIDT2</i> Variant Associated With HDL-C (High-Density Lipoprotein Cholesterol) Levels and Premature Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2494-2508.	1.1	10
304	Genetics of atherosclerosis: The search for genes acting at the level of the vessel wall. Current Atherosclerosis Reports, 2000, 2, 380-389.	2.0	9
305	ABCC6 deficiency is associated with activation of BMP signaling in liver and kidney. FEBS Open Bio, 2015, 5, 257-263.	1.0	9
306	Scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN) are hub genes of coexpression network modules associated with peripheral vein graft patency. Journal of Vascular Surgery, 2016, 64, 202-209.e6.	0.6	9

#	Article	IF	CITATIONS
307	Systems-based approaches for investigation of inter-tissue communication. Journal of Lipid Research, 2019, 60, 450-455.	2.0	9
308	A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivity. PLoS Genetics, 2019, 15, e1008528.	1.5	9
309	Suppression of inflammatory arthritis in human serum paraoxonase 1 transgenic mice. Scientific Reports, 2020, 10, 16848.	1.6	9
310	Oxy210, a Semi-Synthetic Oxysterol, Exerts Anti-Inflammatory Effects in Macrophages via Inhibition of Toll-like Receptor (TLR) 4 and TLR2 Signaling and Modulation of Macrophage Polarization. International Journal of Molecular Sciences, 2022, 23, 5478.	1.8	9
311	Genetic network identifies novel pathways contributing to atherosclerosis susceptibility in the innominate artery. BMC Medical Genomics, 2014, 7, 51.	0.7	8
312	<i>Hamp1</i> mRNA and plasma hepcidin levels are influenced by sex and strain but do not predict tissue iron levels in inbred mice. American Journal of Physiology - Renal Physiology, 2017, 313, G511-G523.	1.6	8
313	Systems Genetics for Mechanistic Discovery in Heart Diseases. Circulation Research, 2020, 126, 1795-1815.	2.0	8
314	Life After GWAS. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 169-169.	1.1	7
315	Genetic modulation of diabetic nephropathy among mouse strains with Ins2 <i>Akita</i> mutation. Physiological Reports, 2014, 2, e12208.	0.7	7
316	Mouse genome-wide association studies and systems genetics uncover the genetic architecture associated with hepatic pharmacokinetic and pharmacodynamic properties of a constrained ethyl antisense oligonucleotide targeting Malat1. PLoS Genetics, 2018, 14, e1007732.	1.5	7
317	DNA Methylation Changes More Slowly Than Physiological States in Response to Weight Loss in Genetically Diverse Mouse Strains. Frontiers in Endocrinology, 2019, 10, 882.	1.5	7
318	Loop Diuretics Inhibit Renal Excretion of Trimethylamine N-Oxide. JACC Basic To Translational Science, 2021, 6, 103-115.	1.9	7
319	Modeling epistasis in mice and yeast using the proportion of two or more distinct genetic backgrounds: Evidence for "polygenic epistasis― PLoS Genetics, 2020, 16, e1009165.	1.5	7
320	Mapping of multiple mouse loci related to the farnesyl pyrophosphate synthetase gene. Mammalian Genome, 1993, 4, 211-219.	1.0	6
321	HDL inhibits the effects of oxidized phospholipids on endothelial cell gene expression via multiple mechanisms. Journal of Lipid Research, 2014, 55, 1678-1692.	2.0	6
322	Using the natural variation of mouse populations to understand host-gut microbiome interactions. Drug Discovery Today: Disease Models, 2018, 28, 61-71.	1.2	6
323	Maternal High-Protein and Low-Protein Diets Perturb Hypothalamus and Liver Transcriptome and Metabolic Homeostasis in Adult Mouse Offspring. Frontiers in Genetics, 2018, 9, 642.	1.1	6
324	Dietary and Pharmacologic Manipulations of Host Lipids and Their Interaction With the Gut Microbiome in Non-human Primates. Frontiers in Medicine, 2021, 8, 646710.	1.2	6

#	Article	IF	CITATIONS
325	Pcpe2, a Novel Extracellular Matrix Protein, Regulates Adipocyte SR-Bl–Mediated High-Density Lipoprotein Uptake. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2708-2725.	1.1	6
326	Serum lipids are associated with nonalcoholic fatty liver disease: a pilot case-control study in Mexico. Lipids in Health and Disease, 2021, 20, 136.	1.2	6
327	Identification of DNA Damage Repair Enzyme <i>Ascc2</i> as Causal for Heart Failure With Preserved Ejection Fraction. Circulation, 2022, 145, 1102-1104.	1.6	6
328	A Suite of Tools for Biologists That Improve Accessibility and Visualization of Large Systems Genetics Datasets: Applications to the Hybrid Mouse Diversity Panel. Methods in Molecular Biology, 2017, 1488, 153-188.	0.4	5
329	Relationship of disease-associated gene expression to cardiac phenotype is buffered by genetic diversity and chromatin regulation. Physiological Genomics, 2016, 48, 601-615.	1.0	4
330	Natriuretic Peptide Receptor 2 Locus Contributes to Carotid Remodeling. Journal of the American Heart Association, 2020, 9, e014257.	1.6	4
331	Mouse Chromosome 8. Mammalian Genome, 1992, 3, S121-S135.	1.0	3
332	Network-centered view of coronary artery disease. Expert Review of Cardiovascular Therapy, 2007, 5, 1095-1103.	0.6	3
333	Cardiovascular disease genes come together. Atherosclerosis, 2015, 242, 630-631.	0.4	3
334	Y-Chromosome Genetic Variation Associated With Atherosclerosis and Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2201-2202.	1.1	3
335	NOTUM promotes thermogenic capacity and protects against diet-induced obesity in male mice. Scientific Reports, 2021, 11, 16409.	1.6	3
336	Genome-Wide Association Analysis Identifies Dcc as an Essential Factor in the Innervation of the Peripheral Vestibular System in Inbred Mice. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 417-431.	0.9	2
337	Heme Oxygenase and Atherosclerosis. , 2002, , 269-278.		2
338	Localization of ubiquitin gene family members to mouse Chromosomes 5, 11, and 18. Mammalian Genome, 1997, 8, 789-790.	1.0	1
339	From Hairballs to an Understanding of Transendothelial Migration of Monocytes in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1809-1810.	1.1	1
340	Inaugural Charles River World Congress on Animal Models in Drug Discovery and Development. Journal of Translational Medicine, 2017, 15, .	1.8	1
341	A Novel Tissue Factor Resistance Locus on Mouse Chromosome 11 Confers Protection from Thrombosis through Reduced Activity of Factor XI. Blood, 2008, 112, 393-393.	0.6	1
342	Integrating Genetic and Network Analysis to Characterize Genes Related to Mouse Weight. PLoS Genetics, 2005, preprint, e130.	1.5	1

#	Article	IF	CITATIONS
343	A gene-controlling response of bone marrow progenitor cells to granulocyte-macrophage colony stimulating factors. Journal of Cellular Physiology, 1985, 124, 293-298.	2.0	0
344	Metabolic Syndrome as a Modifier of Atherosclerosis in Murine Models. Current Drug Targets, 2007, 8, 1215-1220.	1.0	0
345	Tribute to Dr. Steve Schwartz. Journal of Molecular and Cellular Cardiology, 2020, 147, A5-A6.	0.9	Ο
346	Characterization of 5LO transgenic mouse model for atherosclerosis, adipocity, and diabetes related traits. FASEB Journal, 2006, 20, A485.	0.2	0
347	Effects of 5â€lipoxygenase deficiency on adiposity, adrenal and beta cell functions, and bone density. FASEB Journal, 2006, 20, .	0.2	Ο
348	Networkâ€based identification of critical transcription regulators in the metabolic syndrome in mice. FASEB Journal, 2008, 22, 797.1.	0.2	0
349	Human PON2 S311C polymorphism impairs airway epithelia 3OC12â€HSL inactivation and alters PON2 glycosylation. FASEB Journal, 2009, 23, LB271.	0.2	0
350	Inhibition of bone morphogenetic protein protects against atherosclerosis and vascular calcification. FASEB Journal, 2010, 24, 116.1.	0.2	0
351	Abstract 253: NOTCH1 Protects Against Atherosclerosis by Repressing Endothelial Activation and Recruitment of Inflammatory Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	1.1	0
352	Microbiome/Metabolic Syndrome/Diabetes and CVD. FASEB Journal, 2015, 29, 222.3.	0.2	0
353	Abstract 15: Proteomic Analysis of HDL from Inbred Strains of Mice Implicates APOE in Reduced Cholesterol Efflux Capacity via the ABCA1 Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	Ο
354	Abstract 358: Targeting of Heparin Binding EGF-like Growth Factor (HB-EGF) Efficiently Inhibits Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
355	Abstract 625: Targeting of Heparin Binding EGF-like Growth Factor (HBEGF) Suppresses Hyperlipidemia and Atherosclerosis in LDL Receptor Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	0
356	Abstract 529: High-dimensional Genetic Analysis of Lipoprotein Composition and Size in the Mouse. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0