Kongyin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1922218/publications.pdf

Version: 2024-02-01

361413 361022 1,260 43 20 35 citations h-index g-index papers 43 43 43 1322 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Oxalic acid cross-linked sodium alginate and carboxymethyl chitosan hydrogel membrane for separation of dye/NaCl at high NaCl concentration. Chinese Chemical Letters, 2022, 33, 1951-1955.	9.0	23
2	Ultra-stable dextran conjugated prodrug micelles for oxidative stress and glycometabolic abnormality combination treatment of Alzheimer's disease. International Journal of Biological Macromolecules, 2022, 203, 430-444.	7.5	5
3	Anti-fouling and anti-bacterial graphene oxide/calcium alginate hybrid hydrogel membrane for efficient dye/salt separation. Desalination, 2022, 538, 115908.	8.2	28
4	Simple fabrication of Cu2+ doped calcium alginate hydrogel filtration membrane with excellent anti-fouling and antibacterial properties. Chinese Chemical Letters, 2021, 32, 1051-1054.	9.0	49
5	Polypropylene non-woven supported calcium alginate hydrogel filtration membrane for efficient separation of dye/salt at low salt concentration. Desalination, 2021, 500, 114845.	8.2	35
6	Calcium alginate and barium alginate hydrogel filtration membrane coated on fibers for molecule/ion separation. Separation and Purification Technology, 2021, 270, 118761.	7.9	23
7	Kaolin/CaAlg Hydrogel Thin Membrane with Controlled Thickness, High Mechanical Strength, and Good Repetitive Adsorption Performance for Dyes. Industrial & Engineering Chemistry Research, 2020, 59, 4958-4967.	3.7	25
8	Biologically inspired silk fibroin grafted polyacrylonitrile filtration membrane prepared in ZnCl2 aqueous solution. Chinese Chemical Letters, 2019, 30, 239-242.	9.0	21
9	Plant-mediated biosynthesis of iron nanoparticles-calcium alginate hydrogel membrane and its eminent performance in removal of Cr(VI). Chemical Engineering Journal, 2019, 378, 122120.	12.7	46
10	Adsorption and Electrochemical Detection of Bovine Serum Albumin Imprinted Calcium Alginate Hydrogel Membrane. Polymers, 2019, 11 , 622 .	4. 5	30
11	Removal of Dyes and Cd2+ in Water by Kaolin/Calcium Alginate Filtration Membrane. Coatings, 2019, 9, 218.	2.6	13
12	Enrichment of Cd2+ from water with a calcium alginate hydrogel filtration membrane. Science China Technological Sciences, 2018, 61, 438-445.	4.0	13
13	Targeted delivery and thermo/pH-controlled release of doxorubicin by novel nanocapsules. Journal of Materials Science, 2018, 53, 2326-2336.	3.7	17
14	Preparation of Protein Molecular-Imprinted Polysiloxane Membrane Using Calcium Alginate Film as Matrix and Its Application for Cell Culture. Polymers, 2018, 10, 170.	4.5	16
15	Efficient removal of Cd2+ ion from water by calcium alginate hydrogel filtration membrane. Water Science and Technology, 2017, 75, 2322-2330.	2.5	5
16	Bisphenol A Adsorption Properties of Mesoporous CaSiO ₃ @SiO ₂ Grafted Nonwoven Polypropylene Fiber. Industrial & Engineering Chemistry Research, 2017, 56, 2549-2556.	3.7	8
17	Preparation and rebinding properties of proteinâ€imprinted polysiloxane using mesoporous calcium silicate grafted nonâ€woven polypropylene as matrix. Journal of Molecular Recognition, 2016, 29, 115-122.	2.1	10
18	Adsorption of dibutyl phthalate in aqueous solution by mesoporous calcium silicate grafted non-woven polypropylene. Chemical Engineering Journal, 2016, 306, 452-459.	12.7	40

#	Article	IF	Citations
19	Preparation and evaluation of PCL–PEG–PCL polymeric nanoparticles for doxorubicin delivery against breast cancer. RSC Advances, 2016, 6, 54727-54737.	3.6	34
20	Preparation, characterization, and photocatalytic degradation properties of polyacrylamide/calcium alginate/ <scp>T</scp> i <scp>O</scp> ₂ composite film. Polymer Composites, 2016, 37, 1292-1301.	4.6	19
21	Chain stiffness regulates entropy-templated perfect mixing at single-nanoparticle level. Nanoscale, 2016, 8, 1024-1032.	5.6	23
22	Preparation and dye filtration property of electrospun polyhydroxybutyrate–calcium alginate/carbon nanotubes composite nanofibrous filtration membrane. Separation and Purification Technology, 2016, 161, 69-79.	7.9	128
23	Preparation and characterization of protein molecular imprinted calcium alginate hydrogel film with controllable thickness. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2016, 46, 931-939.	0.5	1
24	Preparation of tricalcium phosphate–calcium alginate composite flat sheet membranes and their application for protein release. Polymer Composites, 2015, 36, 1899-1906.	4.6	6
25	Adsorption and recognition of protein molecular imprinted calcium alginate/polyacrylamide hydrogel film with good regeneration performance and high toughness. Reactive and Functional Polymers, 2015, 87, 7-14.	4.1	41
26	A free-standing calcium alginate/polyacrylamide hydrogel nanofiltration membrane with high anti-fouling performance: Preparation and characterization. Desalination, 2015, 365, 234-241.	8.2	103
27	Calcium alginate hydrogel filtration membrane with excellent anti-fouling property and controlled separation performance. Journal of Membrane Science, 2015, 492, 536-546.	8.2	117
28	Adsorption and photocatalytic degradation of dyes on polyacrylamide/calcium alginate/ TiO ₂ composite film. Functional Materials Letters, 2015, 08, 1540014.	1.2	11
29	Adsorption and sustained release of haemoglobin imprinted polysiloxane using a calcium alginate film as a matrix. RSC Advances, 2015, 5, 26977-26984.	3.6	4
30	Imprinting of bovine serum albumin in a nonwoven polypropylene membrane supported polyacrylamide/calcium alginate interpenetrating polymer network hydrogel. RSC Advances, 2014, 4, 55846-55852.	3.6	11
31	Stability of acrylic acid grafted poly(vinylidene fluoride) hollow fiber membrane prepared by highâ€energy electron beam. Journal of Applied Polymer Science, 2014, 131, .	2.6	2
32	Preparation and adsorption of bovine serum albumin-imprinted polyacrylamide hydrogel membrane grafted on non-woven polypropylene. Talanta, 2014, 121, 256-262.	5.5	68
33	Adsorption and photocatalytic degradation of methyl orange imprinted composite membranes using TiO2/calcium alginate hydrogel as matrix. Catalysis Today, 2014, 236, 127-134.	4.4	81
34	Preparation and characterization of protein molecularly imprinted polysiloxane using mesoporous calcium silicate as matrix by sol–gel technology. Journal of Sol-Gel Science and Technology, 2014, 71, 428-436.	2.4	20
35	Preparation, characterization and photocatalytic degradation properties of a TiO ₂ /calcium alginate composite film and the recovery of TiO ₂ nanoparticles. RSC Advances, 2014, 4, 51321-51329.	3.6	48
36	Adsorption properties of dye imprinted polysiloxane composite microspheres using strong basic anion-exchange resin as matrix. Desalination and Water Treatment, 2013, 51, 7604-7611.	1.0	2

#	Article	IF	CITATIONS
37	Preparation and characterization of protein imprinted agarose microspheres. Polymer Bulletin, 2010, 65, 245-263.	3.3	11
38	The Rebinding Properties of Bovine Serum Albumin Imprinted Calcium Alginate/Phosphate Hybrid Microspheres Via the Adjustment of pH Values and Salt Concentration. Macromolecular Symposia, 2010, 297, 126-137.	0.7	7
39	Preparation of bovine serum albuminâ€imprinted calcium polyacrylate/alginate hybrid microspheres via Ca ²⁺ crosslinking. Journal of Applied Polymer Science, 2009, 113, 1133-1140.	2.6	20
40	Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres. Reactive and Functional Polymers, 2008, 68, 732-741.	4.1	65
41	Macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres with the surface imprinting of bovine serum albumin in inverseâ€phase suspension. Journal of Applied Polymer Science, 2008, 109, 2687-2693.	2.6	19
42	Molecularly-Imprinted Calcium Phosphate/Calcium Alginate Composite Microspheres by Surface Imprinting via Silane Crosslinking. Adsorption Science and Technology, 2008, 26, 631-641.	3.2	7
43	Preparation of hydroxyapatite/Ca-alginate composite microspheres via inverse suspension crosslinked method. Journal of Applied Polymer Science, 2007, 104, 2034-2038.	2.6	5