List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1922105/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ghost mitochondria drive metastasis through adaptive GCN2/Akt therapeutic vulnerability.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                               | 3.3 | 12        |
| 2  | Small extracellular vesicle-mediated <i>ITGB6</i> siRNA delivery downregulates the αVβ6 integrin and inhibits adhesion and migration of recipient prostate cancer cells. Cancer Biology and Therapy, 2022, 23, 173-185. | 1.5 | 12        |
| 3  | Differential expression of αVβ3 and αVβ6 integrins in prostate cancer progression. PLoS ONE, 2021, 16, e0244985.                                                                                                        | 1.1 | 16        |
| 4  | A cancer ubiquitome landscape identifies metabolic reprogramming as target of Parkin tumor suppression. Science Advances, 2021, 7, .                                                                                    | 4.7 | 19        |
| 5  | IFIT3 (Interferon Induced Protein with Tetratricopeptide Repeats 3) Modulates STAT1 Expression in small Extracellular Vesicles. Biochemical Journal, 2021, 478, 3905-3921.                                              | 1.7 | 3         |
| 6  | Small Extracellular Vesicle Regulation of Mitochondrial Dynamics Reprograms a Hypoxic Tumor<br>Microenvironment. Developmental Cell, 2020, 55, 163-177.e6.                                                              | 3.1 | 26        |
| 7  | The mitophagy effector FUNDC1 controls mitochondrial reprogramming and cellular plasticity in cancer cells. Science Signaling, 2020, 13, .                                                                              | 1.6 | 51        |
| 8  | Hitting the Bullseye: Are extracellular vesicles on target?. Journal of Extracellular Vesicles, 2020, 10, e12032.                                                                                                       | 5.5 | 11        |
| 9  | Small extracellular vesicles modulated by αVβ3Âintegrin induce neuroendocrine differentiation in recipient cancer cells. Journal of Extracellular Vesicles, 2020, 9, 1761072.                                           | 5.5 | 32        |
| 10 | The αvβ6Âintegrin in cancer cellâ€derived small extracellular vesicles enhances angiogenesis. Journal of<br>Extracellular Vesicles, 2020, 9, 1763594.                                                                   | 5.5 | 41        |
| 11 | Implementation of Germline Testing for Prostate Cancer: Philadelphia Prostate Cancer Consensus<br>Conference 2019. Journal of Clinical Oncology, 2020, 38, 2798-2811.                                                   | 0.8 | 170       |
| 12 | Methods for extracellular vesicle isolation from cancer cells. , 2020, 3, 371-384.                                                                                                                                      |     | 3         |
| 13 | Prostate cancer sheds the αvβ3 integrin in vivo through exosomes. Matrix Biology, 2019, 77, 41-57.                                                                                                                      | 1.5 | 73        |
| 14 | MFF Regulation of Mitochondrial Cell Death Is a Therapeutic Target in Cancer. Cancer Research, 2019,<br>79, 6215-6226.                                                                                                  | 0.4 | 34        |
| 15 | Myc Regulation of a Mitochondrial Trafficking Network Mediates Tumor Cell Invasion and Metastasis.<br>Molecular and Cellular Biology, 2019, 39, .                                                                       | 1.1 | 31        |
| 16 | Myc-mediated transcriptional regulation of the mitochondrial chaperone TRAP1 controls primary and metastatic tumor growth. Journal of Biological Chemistry, 2019, 294, 10407-10414.                                     | 1.6 | 25        |
| 17 | Tumor-Derived Extracellular Vesicles Require β1 Integrins to Promote Anchorage-Independent Growth.<br>IScience, 2019, 14, 199-209.                                                                                      | 1.9 | 29        |
| 18 | Activated Extracellular Vesicles as New Therapeutic Targets?. Trends in Cell Biology, 2019, 29, 276-278.                                                                                                                | 3.6 | 2         |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | αvβ3 Integrin Mediates Radioresistance of Prostate Cancer Cells through Regulation of Survivin.<br>Molecular Cancer Research, 2019, 17, 398-408.                                                                                                      | 1.5 | 31        |
| 20 | Evaluation of Drug Combination Effect Using a Bliss Independence Dose–Response Surface Model.<br>Statistics in Biopharmaceutical Research, 2018, 10, 112-122.                                                                                         | 0.6 | 86        |
| 21 | Exosomal αvβ6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biology, 2018, 70, 20-35.                                                                                                                                  | 1.5 | 54        |
| 22 | Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750. | 5.5 | 6,961     |
| 23 | Unique pattern of neutrophil migration and function during tumor progression. Nature Immunology, 2018, 19, 1236-1247.                                                                                                                                 | 7.0 | 140       |
| 24 | Syntaphilin Ubiquitination Regulates Mitochondrial Dynamics and Tumor Cell Movements. Cancer Research, 2018, 78, 4215-4228.                                                                                                                           | 0.4 | 47        |
| 25 | c‧rc, Insulinâ€Like Growth Factor I Receptor, Gâ€Proteinâ€Coupled Receptor Kinases and Focal Adhesion<br>Kinase are Enriched Into Prostate Cancer Cell Exosomes. Journal of Cellular Biochemistry, 2017, 118,<br>66-73.                               | 1.2 | 74        |
| 26 | Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell, 2017, 32, 654-668.e5.                                                                              | 7.7 | 457       |
| 27 | Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. Journal of Clinical Investigation, 2017, 127, 3755-3769.                                                                                                | 3.9 | 37        |
| 28 | The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis.<br>PLoS Biology, 2016, 14, e1002507.                                                                                                                | 2.6 | 118       |
| 29 | A neuronal network of mitochondrial dynamics regulates metastasis. Nature Communications, 2016, 7,<br>13730.                                                                                                                                          | 5.8 | 112       |
| 30 | Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming. Cancer Cell, 2016, 30, 257-272.                                                                                                                                                          | 7.7 | 158       |
| 31 | αvβ6 Integrin Promotes Castrate-Resistant Prostate Cancer through JNK1-Mediated Activation of<br>Androgen Receptor. Cancer Research, 2016, 76, 5163-5174.                                                                                             | 0.4 | 32        |
| 32 | v-Src Oncogene Induces Trop2 Proteolytic Activation via Cyclin D1. Cancer Research, 2016, 76, 6723-6734.                                                                                                                                              | 0.4 | 22        |
| 33 | Exosome-mediated Transfer of αvβ3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a<br>Migratory Phenotype. Molecular Cancer Research, 2016, 14, 1136-1146.                                                                                | 1.5 | 115       |
| 34 | Transgenic Expression of the Mitochondrial Chaperone TNFR-associated Protein 1 (TRAP1) Accelerates<br>Prostate Cancer Development. Journal of Biological Chemistry, 2016, 291, 25247-25254.                                                           | 1.6 | 29        |
| 35 | CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation. Immunity, 2016, 44, 303-315.                                                                                 | 6.6 | 299       |
| 36 | β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation. Oncotarget, 2016, 7, 52618-52630.                                                                                                                                        | 0.8 | 6         |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A microRNA/Runx1/Runx2 network regulates prostate tumor progression from onset to adenocarcinoma in TRAMP mice. Oncotarget, 2016, 7, 70462-70474.                                                       | 0.8 | 21        |
| 38 | Exosome-mediated transfer from the tumor microenvironment increases TGFÎ <sup>2</sup> signaling in squamous cell carcinoma. American Journal of Translational Research (discontinued), 2016, 8, 2432-7. | 0.0 | 49        |
| 39 | Deletion of Cyclophilin D Impairs β-Oxidation and Promotes Glucose Metabolism. Scientific Reports, 2015, 5, 15981.                                                                                      | 1.6 | 34        |
| 40 | Expression of the ILâ€11 Gene in Metastatic Cells Is Supported by Runx2â€5mad and Runx2â€cJun Complexes<br>Induced by TGFβ1. Journal of Cellular Biochemistry, 2015, 116, 2098-2108.                    | 1.2 | 21        |
| 41 | The αvβ6 Integrin Is Transferred Intercellularly via Exosomes. Journal of Biological Chemistry, 2015, 290,<br>4545-4551.                                                                                | 1.6 | 140       |
| 42 | αvβ6 integrin is required for TGFβ1-mediated matrix metalloproteinase2 expression. Biochemical Journal,<br>2015, 466, 525-536.                                                                          | 1.7 | 27        |
| 43 | PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8638-8643.                   | 3.3 | 174       |
| 44 | Adaptive Mitochondrial Reprogramming and Resistance to PI3K Therapy. Journal of the National Cancer<br>Institute, 2015, 107, .                                                                          | 3.0 | 91        |
| 45 | Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Science Signaling, 2015, 8, ra80.                                                        | 1.6 | 84        |
| 46 | Jak2-Stat5a/b Signaling Induces Epithelial-to-Mesenchymal Transition and Stem-Like Cell Properties in<br>Prostate Cancer. American Journal of Pathology, 2015, 185, 2505-2522.                          | 1.9 | 54        |
| 47 | Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression. PLoS ONE, 2015, 10, e0130060.                                                                                                        | 1.1 | 23        |
| 48 | Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget, 2015, 6, 14318-14328.                                                                             | 0.8 | 58        |
| 49 | Integrin αvβ6 Promotes an Osteolytic Program in Cancer Cells by Upregulating MMP2. Cancer Research, 2014, 74, 1598-1608.                                                                                | 0.4 | 61        |
| 50 | Deletion of the Mitochondrial Chaperone TRAP-1ÂUncovers Global Reprogramming of Metabolic<br>Networks. Cell Reports, 2014, 8, 671-677.                                                                  | 2.9 | 64        |
| 51 | Landscape of the mitochondrial Hsp90 metabolome in tumours. Nature Communications, 2013, 4, 2139.                                                                                                       | 5.8 | 135       |
| 52 | β <sub>1</sub> integrins mediate resistance to ionizing radiation in vivo by inhibiting câ€Jun amino<br>terminal kinase 1. Journal of Cellular Physiology, 2013, 228, 1601-1609.                        | 2.0 | 44        |
| 53 | Trop-2 Promotes Prostate Cancer Metastasis By Modulating β1 Integrin Functions. Cancer Research, 2013, 73, 3155-3167.                                                                                   | 0.4 | 103       |
| 54 | Metabolic stress regulates cytoskeletal dynamics and metastasis of cancer cells. Journal of Clinical Investigation, 2013, 123, 2907-2920.                                                               | 3.9 | 165       |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | IGF-IR Promotes Prostate Cancer Growth by Stabilizing α5β1 Integrin Protein Levels. PLoS ONE, 2013, 8,<br>e76513.                                                                                                    | 1.1 | 32        |
| 56 | Control of Tumor Bioenergetics and Survival Stress Signaling by Mitochondrial HSP90s. Cancer Cell, 2012, 22, 331-344.                                                                                                | 7.7 | 103       |
| 57 | PSA regulates androgen receptor expression in prostate cancer cells. Prostate, 2012, 72, 769-776.                                                                                                                    | 1.2 | 30        |
| 58 | Tropâ€2 inhibits prostate cancer cell adhesion to fibronectin through the β <sub>1</sub> integrinâ€RACK1 axis. Journal of Cellular Physiology, 2012, 227, 3670-3677.                                                 | 2.0 | 58        |
| 59 | TRAP-1, the mitochondrial Hsp90. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 767-773.                                                                                                       | 1.9 | 156       |
| 60 | Insulinâ€ <b>l</b> ike growth factor 1 stimulation of androgen receptor activity requires β <sub>1A</sub><br>integrins. Journal of Cellular Physiology, 2012, 227, 751-758.                                          | 2.0 | 35        |
| 61 | α(V)β(6) integrin expression is induced in the POET and Pten(pc-/-) mouse models of prostatic inflammation and prostatic adenocarcinoma. American Journal of Translational Research (discontinued), 2012, 4, 165-74. | 0.0 | 13        |
| 62 | The Search for a Better Prostate Cancer Biomarker. Journal of Urology, 2011, 186, 1758-1759.                                                                                                                         | 0.2 | 1         |
| 63 | Molecular Targets for Radiation Oncology in Prostate Cancer. Frontiers in Oncology, 2011, 1, 17.                                                                                                                     | 1.3 | 12        |
| 64 | Targeted inhibition of mitochondrial Hsp90 suppresses localised and metastatic prostate cancer growth in a genetic mouse model of disease. British Journal of Cancer, 2011, 104, 629-634.                            | 2.9 | 58        |
| 65 | IAP Regulation of Metastasis. Cancer Cell, 2010, 17, 53-64.                                                                                                                                                          | 7.7 | 258       |
| 66 | The cancerâ€related Runx2 protein enhances cell growth and responses to androgen and TGFβ in prostate cancer cells. Journal of Cellular Biochemistry, 2010, 109, 828-837.                                            | 1.2 | 43        |
| 67 | β1 integrins mediate cell proliferation in threeâ€dimensional cultures by regulating expression of the sonic hedgehog effector protein, GLI1. Journal of Cellular Physiology, 2010, 224, 210-217.                    | 2.0 | 30        |
| 68 | Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene, 2010, 29, 811-821.                                            | 2.6 | 246       |
| 69 | Protein Kinase D1 Inhibits Cell Proliferation through Matrix Metalloproteinase-2 and Matrix<br>Metalloproteinase-9 Secretion in Prostate Cancer. Cancer Research, 2010, 70, 2095-2104.                               | 0.4 | 48        |
| 70 | Preclinical Characterization of Mitochondria-Targeted Small Molecule Hsp90 Inhibitors, Gamitrinibs,<br>in Advanced Prostate Cancer. Clinical Cancer Research, 2010, 16, 4779-4788.                                   | 3.2 | 85        |
| 71 | Cytoprotective Mitochondrial Chaperone TRAP-1 As a Novel Molecular Target in Localized and Metastatic Prostate Cancer. American Journal of Pathology, 2010, 176, 393-401.                                            | 1.9 | 113       |
| 72 | CD133, Trop-2 and alpha2beta1 integrin surface receptors as markers of putative human prostate cancer stem cells. American Journal of Translational Research (discontinued), 2010, 2, 135-44.                        | 0.0 | 41        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Endogenous Tumor Suppression Mediated by <i>PTEN</i> Involves <i>Survivin</i> Gene Silencing.<br>Cancer Research, 2009, 69, 4954-4958.                                                             | 0.4 | 61        |
| 74 | β1 Integrin Cytoplasmic Variants Differentially Regulate Expression of the Antiangiogenic Extracellular<br>Matrix Protein Thrombospondin 1. Cancer Research, 2009, 69, 5374-5382.                  | 0.4 | 13        |
| 75 | Prostate cancer regulatory networks. Journal of Cellular Biochemistry, 2009, 107, 845-852.                                                                                                         | 1.2 | 32        |
| 76 | Integrin signaling aberrations in prostate cancer. American Journal of Translational Research (discontinued), 2009, 1, 211-20.                                                                     | 0.0 | 28        |
| 77 | Bicalutamide inhibits androgenâ€mediated adhesion of prostate cancer cells exposed to ionizing radiation. Prostate, 2008, 68, 1734-1742.                                                           | 1.2 | 8         |
| 78 | Integrins in prostate cancer progression. Endocrine-Related Cancer, 2008, 15, 657-664.                                                                                                             | 1.6 | 154       |
| 79 | Prostate carcinoma and radiation therapy: therapeutic treatment resistance and strategies for targeted therapeutic intervention. Expert Review of Anticancer Therapy, 2008, 8, 967-974.            | 1.1 | 21        |
| 80 | "D" approach to prevent metastasis. Cancer Biology and Therapy, 2007, 6, 110-111.                                                                                                                  | 1.5 | 0         |
| 81 | The integrin—growth factor receptor duet. Journal of Cellular Physiology, 2007, 213, 649-653.                                                                                                      | 2.0 | 146       |
| 82 | Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene, 2007, 26, 2678-2684.                                                                                                          | 2.6 | 162       |
| 83 | Androgen action series. Journal of Cellular Biochemistry, 2006, 99, 331-332.                                                                                                                       | 1.2 | 0         |
| 84 | β1 Integrins Modulate Cell Adhesion by Regulating Insulin-Like Growth Factor-II Levels in the<br>Microenvironment. Cancer Research, 2006, 66, 331-342.                                             | 0.4 | 25        |
| 85 | High dose fractionated ionizing radiation inhibits prostate cancer cell adhesion and β1 integrin expression. Prostate, 2005, 64, 83-91.                                                            | 1.2 | 21        |
| 86 | The Runx2 Osteogenic Transcription Factor Regulates Matrix Metalloproteinase 9 in Bone Metastatic<br>Cancer Cells and Controls Cell Invasion. Molecular and Cellular Biology, 2005, 25, 8581-8591. | 1.1 | 280       |
| 87 | β1A Integrin Expression Is Required for Type 1 Insulin-Like Growth Factor Receptor Mitogenic and Transforming Activities and Localization to Focal Contacts. Cancer Research, 2005, 65, 6692-6700. | 0.4 | 69        |
| 88 | Correction: Selective modulation of type 1 insulin-like growth factor receptor signaling and functions by β1 integrins. Journal of Cell Biology, 2004, 167, 565-565.                               | 2.3 | 0         |
| 89 | Selective modulation of type 1 insulin-like growth factor receptor signaling and functions by β1 integrins. Journal of Cell Biology, 2004, 166, 407-418.                                           | 2.3 | 77        |
| 90 | Regulation of β1C and β1A Integrin Expression in Prostate Carcinoma Cells. Journal of Biological Chemistry, 2004, 279, 1692-1702.                                                                  | 1.6 | 32        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Advances in prostate cancer research. Journal of Cellular Biochemistry, 2004, 91, 1-2.                                                                                                                                               | 1.2 | 0         |
| 92  | Advances in prostate cancer research: part III. Journal of Cellular Biochemistry, 2004, 91, 647-648.                                                                                                                                 | 1.2 | 0         |
| 93  | Integrin Signaling in Cancer. , 2004, 119, 15-31.                                                                                                                                                                                    |     | 30        |
| 94  | αvβ3 integrin expression up-regulates cdc2, which modulates cell migration. Journal of Cell Biology,<br>2003, 161, 817-826.                                                                                                          | 2.3 | 126       |
| 95  | Fibronectin Protects Prostate Cancer Cells from Tumor Necrosis Factor-α-induced Apoptosis via the AKT/Survivin Pathway. Journal of Biological Chemistry, 2003, 278, 50402-50411.                                                     | 1.6 | 133       |
| 96  | Integrins and prostate cancer metastases. , 2002, , 185-195.                                                                                                                                                                         |     | 0         |
| 97  | Regulation of MCP-3 and BRCA2 mRNA Expression Levels by β1 Integrins. Experimental and Molecular Pathology, 2001, 70, 239-247.                                                                                                       | 0.9 | 4         |
| 98  | Epitope-Specific Antibodies to the β1C Integrin Cytoplasmic Domain Variant. Experimental and Molecular<br>Pathology, 2001, 70, 275-280.                                                                                              | 0.9 | 2         |
| 99  | Integrins and prostate cancer metastases. Cancer and Metastasis Reviews, 2001, 20, 321-331.                                                                                                                                          | 2.7 | 102       |
| 100 | Vascular Endothelial Growth Factor–Stimulated Actin Reorganization and Migration of Endothelial<br>Cells Is Regulated via the Serine/Threonine Kinase Akt. Circulation Research, 2000, 86, 892-896.                                  | 2.0 | 386       |
| 101 | Differential Role of β1Cand β1AIntegrin Cytoplasmic Variants in Modulating Focal Adhesion Kinase,<br>Protein Kinase B/AKT, and Ras/Mitogen-activated Protein Kinase Pathways. Molecular Biology of the<br>Cell, 2000, 11, 2235-2249. | 0.9 | 48        |
| 102 | Substrate Specificity of αvβ3Integrin-mediated Cell Migration and Phosphatidylinositol 3-Kinase/AKT<br>Pathway Activation. Journal of Biological Chemistry, 2000, 275, 24565-24574.                                                  | 1.6 | 136       |
| 103 | Down-Regulation of Î <sup>2</sup> 1C Integrin in Breast Carcinomas Correlates with High Proliferative Fraction,<br>High Histological Grade, and Larger Size. American Journal of Pathology, 2000, 156, 169-174.                      | 1.9 | 31        |
| 104 | Regulation of mRNA and Protein Levels of β1 Integrin Variants in Human Prostate Carcinoma. American<br>Journal of Pathology, 2000, 157, 1727-1734.                                                                                   | 1.9 | 47        |
| 105 | Expression of Heterologous Integrin Genes. , 1999, 129, 125-134.                                                                                                                                                                     |     | 0         |
| 106 | p27kip1 acts as a downstream effector of and is coexpressed with the β1C integrin in prostatic adenocarcinoma. Journal of Clinical Investigation, 1999, 103, 321-329.                                                                | 3.9 | 47        |
| 107 | Integrin laminin receptor profile of pulmonary squamous cell and adenocarcinomas. Human Pathology, 1998, 29, 1208-1215.                                                                                                              | 1.1 | 30        |
| 108 | β1C Integrin in Epithelial Cells Correlates with a Nonproliferative Phenotype. American Journal of Pathology, 1998, 153, 1079-1087.                                                                                                  | 1.9 | 45        |

| #   | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Molecular Identification of a Novel Fibrinogen Binding Site on the First Domain of ICAM-1 Regulating<br>Leukocyte-Endothelium Bridging. Journal of Biological Chemistry, 1997, 272, 435-441.                                                                     | 1.6  | 110       |
| 110 | Alternatively spliced variants: A new view of the integrin cytoplasmic domain. Matrix Biology, 1997, 16, 185-193.                                                                                                                                                | 1.5  | 74        |
| 111 | Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by<br>intercellular adhesion molecule 1-fibrinogen recognition Proceedings of the National Academy of<br>Sciences of the United States of America, 1995, 92, 1505-1509. | 3.3  | 180       |
| 112 | Structural Recognition of a Novel Fibrinogen γ Chain Sequence (117 – 133) by Intercellular Adhesion<br>Molecule-1 Mediates Leukocyte-Endothelium Interaction. Journal of Biological Chemistry, 1995, 270,<br>696-699.                                            | 1.6  | 100       |
| 113 | The Novel Structural Motif Gln795–Gln802 in the Integrin β1C Cytoplasmic Domain Regulates Cell<br>Proliferation. Journal of Biological Chemistry, 1995, 270, 24666-24669.                                                                                        | 1.6  | 51        |
| 114 | Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell, 1993, 73, 1423-1434.                                                                                                                                   | 13.5 | 334       |