
Cristina Aguayo-Mazzucato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/192205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diabetes mellitus correlates with increased biological age as indicated by clinical biomarkers. GeroScience, 2022, 44, 415-427.	2.1	29
2	Biological age in diabetes and precision medicine. Aging, 2022, 14, 4622-4623.	1.4	2
3	Unique Human and Mouse β-Cell Senescence-Associated Secretory Phenotype (SASP) Reveal Conserved Signaling Pathways and Heterogeneous Factors. Diabetes, 2021, 70, 1098-1116.	0.3	27
4	Effects of exercise on cellular and tissue aging. Aging, 2021, 13, 14522-14543.	1.4	27
5	969-P: Diabetes Mellitus Is Associated with Increased Biological Age. Diabetes, 2021, 70, .	0.3	0
6	1163-P: Exercise as a Strategy to Decrease Pancreatic ß-Cell Senescence. Diabetes, 2021, 70, .	0.3	0
7	Functional changes in beta cells during ageing and senescence. Diabetologia, 2020, 63, 2022-2029.	2.9	41
8	Acceleration of β Cell Aging Determines Diabetes and Senolysis Improves Disease Outcomes. Cell Metabolism, 2019, 30, 129-142.e4.	7.2	277
9	Understanding the growing epidemic of type 2 diabetes in the Hispanic population living in the United States. Diabetes/Metabolism Research and Reviews, 2019, 35, e3097.	1.7	115
10	β-cell senescence in type 2 diabetes. Aging, 2019, 11, 9967-9968.	1.4	7
11	T3 Induces Both Markers of Maturation and Aging in Pancreatic Î ² -Cells. Diabetes, 2018, 67, 1322-1331.	0.3	14
12	Pancreatic β Cell Regeneration as a Possible Therapy for Diabetes. Cell Metabolism, 2018, 27, 57-67.	7.2	172
13	β Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Resistance. Cell Metabolism, 2017, 25, 898-910.e5.	7.2	149
14	Pancreatic β-cell heterogeneity revisited. Nature, 2016, 535, 365-366.	13.7	18
15	Dynamic development of the pancreas from birth to adulthood. Upsala Journal of Medical Sciences, 2016, 121, 155-158.	0.4	52
16	MAFA and T3 Drive Maturation of Both Fetal Human Islets and Insulin-Producing Cells Differentiated From hESC. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3651-3659.	1.8	38
17	Thyroid Hormone Promotes Postnatal Rat Pancreatic β-Cell Development and Glucose-Responsive Insulin Secretion Through MAFA. Diabetes, 2013, 62, 1569-1580.	0.3	120
18	Genetic Disruption of SOD1 Gene Causes Glucose Intolerance and Impairs β-Cell Function. Diabetes, 2013, 62, 4201-4207.	0.3	34

#	Article	IF	CITATIONS
19	β-cell dedifferentiation in diabetes is important, but what is it?. Islets, 2013, 5, 233-237.	0.9	102
20	PDX1 in Ducts Is Not Required for Postnatal Formation of Â-Cells but Is Necessary for Their Subsequent Maturation. Diabetes, 2013, 62, 3459-3468.	0.3	21
21	Subpopulations of GFP-Marked Mouse Pancreatic β-Cells Differ in Size, Granularity, and Insulin Secretion. Endocrinology, 2012, 153, 5180-5187.	1.4	47
22	Tissue-specific disallowance of housekeeping genes: The other face of cell differentiation. Genome Research, 2011, 21, 95-105.	2.4	163
23	Mice with a Targeted Deletion of the Type 2 Deiodinase Are Insulin Resistant and Susceptible to Diet Induced Obesity. PLoS ONE, 2011, 6, e20832.	1.1	74
24	Stem cell therapy for type 1 diabetes mellitus. Nature Reviews Endocrinology, 2010, 6, 139-148.	4.3	153
25	Extracellular Nicotinamide Phosphoribosyltransferase Is a Component of the Senescence-Associated Secretory Phenotype. Frontiers in Endocrinology, 0, 13, .	1.5	5