Akihiro Ishii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1921969/publications.pdf Version: 2024-02-01

Δειμιρό Ιεμι

#	Article	IF	CITATIONS
1	Evidence for near-unity radiative quantum efficiency of bright excitons in carbon nanotubes from the Purcell effect. Physical Review Research, 2022, 4, .	3.6	1
2	Formation of organic color centers in air-suspended carbon nanotubes using vapor-phase reaction. Nature Communications, 2022, 13, .	12.8	3
3	Waveguide coupled cavity-enhanced light emission from individual carbon nanotubes. APL Photonics, 2021, 6, .	5.7	3
4	(Invited) Near-Unity Radiative Quantum Efficiency of Excitons in Carbon Nanotubes. ECS Meeting Abstracts, 2021, MA2021-01, 556-556.	0.0	0
5	Hexagonal Boron Nitride As an Ideal Substrate for Carbon Nanotube Photonics. ACS Photonics, 2020, 7, 1773-1779.	6.6	22
6	(Invited) Exciton Dynamics in Air-Suspended Carbon Nanotubes Coupled to Nanobeam Cavities. ECS Meeting Abstracts, 2020, MA2020-01, 669-669.	0.0	0
7	Organic Molecular Tuning of Many-Body Interaction Energies in Air-Suspended Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 5776-5781.	3.1	7
8	High Efficiency Dark-to-Bright Exciton Conversion in Carbon Nanotubes. Physical Review X, 2019, 9, .	8.9	14
9	Super-resolution fluorescence imaging of carbon nanotubes using a nonlinear excitonic process. Optics Express, 2019, 27, 17463.	3.4	6
10	(Invited) Organic Molecular Tuning of Many-Body Interaction Energies in Air-Suspended Carbon Nanotubes. ECS Meeting Abstracts, 2019, , .	0.0	0
11	Decay Dynamics and Diffusion Lengths of Bright and Dark Excitons in Air-Suspended Carbon Nanotubes. ECS Meeting Abstracts, 2019, , .	0.0	1
12	Spectral tuning of optical coupling between air-mode nanobeam cavities and individual carbon nanotubes. Applied Physics Letters, 2018, 112, 021101.	3.3	9
13	Single Carbon Nanotubes as Ultrasmall All-Optical Memories. ACS Photonics, 2018, 5, 559-565.	6.6	28
14	Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities. Nano Letters, 2018, 18, 3873-3878.	9.1	44
15	Cold exciton electroluminescence from air-suspended carbon nanotube split-gate devices. Applied Physics Letters, 2017, 110, .	3.3	23
16	Room-Temperature Single-Photon Emission from Micrometer-Long Air-Suspended Carbon Nanotubes. Physical Review Applied, 2017, 8, .	3.8	29
17	Electric-Field Induced Activation of Dark Excitonic States in Carbon Nanotubes. Nano Letters, 2016, 16, 2278-2282.	9.1	12
18	Exciton diffusion, end quenching, and exciton-exciton annihilation in individual air-suspended carbon nanotubes. Physical Review B, 2015, 91, .	3.2	55

AKIHIRO İSHII

#	Article	IF	CITATIONS
19	Gate-controlled generation of optical pulse trains using individual carbon nanotubes. Nature Communications, 2015, 6, 6335.	12.8	19
20	Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters. Nature Communications, 2014, 5, 5580.	12.8	103
21	Stark effect of excitons in individual air-suspended carbon nanotubes. Applied Physics Letters, 2014, 105, 161104.	3.3	25
22	Giant Circular Dichroism in Individual Carbon Nanotubes Induced by Extrinsic Chirality. Physical Review X, 2014, 4, .	8.9	21
23	Spontaneous Exciton Dissociation in Carbon Nanotubes. Physical Review Letters, 2014, 112, 117401.	7.8	48