
Taichi Furukawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/192179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of suspension processing conditions on the multi-scale structural changes of photocured SiO2 bodies during sintering process: An operando observation using optical coherence tomography. Advanced Powder Technology, 2022, 33, 103533.	4.1	2
2	3D structuring of dense alumina ceramics using fiber-based stereolithography with interparticle photo-cross-linkable slurry. Advanced Powder Technology, 2021, 32, 72-79.	4.1	12
3	Development of Micromanipulators using Stereolithography. Journal of the Robotics Society of Japan, 2021, 39, 306-309.	0.1	0
4	3D-Printed Micro-Tweezers with a Compliant Mechanism Designed Using Topology Optimization. Micromachines, 2021, 12, 579.	2.9	13
5	Multi-scale micro-stereolithography using optical fibers with a photocurable ceramic slurry. Optical Materials Express, 2021, 11, 105.	3.0	6
6	3D Helical Micromixer Fabricated by Micro Lostâ€Wax Casting. Advanced Materials Technologies, 2020, 5, 1900794.	5.8	12
7	Highly Deformable Optoelectronics Using Liquid Metal. , 2020, , .		Ο
8	Liquidâ€ S tate Optoelectronics Using Liquid Metal. Advanced Electronic Materials, 2020, 6, 1901135.	5.1	14
9	Additive Manufacturing of Micromanipulator Mounted on a Glass Capillary for Biological Applications. Micromachines, 2020, 11, 174.	2.9	12
10	Rapid three-dimensional structuring of transparent SiO2 glass using interparticle photo-cross-linkable suspensions. Communications Materials, 2020, 1, .	6.9	32
11	Multi-scale laser direct writing of conductive metal microstructures using a 405-nm blue laser. Optics Express, 2020, 28, 8363.	3.4	15
12	Simple autofocusing method by image processing using transmission images for large-scale two-photon lithography. Optics Express, 2020, 28, 12342.	3.4	13
13	Multi-material microstereolithography using a palette with multicolor photocurable resins. Optical Materials Express, 2020, 10, 2522.	3.0	25
14	Simple autofocusing method by image processing for two-photon lithography. , 2020, , .		0
15	Excitation of erbium-doped nanoparticles in 1550-nm wavelength region for deep tissue imaging with reduced degradation of spatial resolution. Journal of Biomedical Optics, 2019, 24, 1.	2.6	9
16	Coherent anti-Stokes Raman scattering rigid endoscope toward robot-assisted surgery. Biomedical Optics Express, 2018, 9, 387.	2.9	20
17	3D Shape Reconstruction of 3D Printed Transparent Microscopic Objects from Multiple Photographic Images Using Ultraviolet Illumination. Micromachines, 2018, 9, 261.	2.9	3
18	Invited Article: Label-free nerve imaging with a coherent anti-Stokes Raman scattering rigid endoscope using two optical fibers for laser delivery. APL Photonics, 2018, 3, 092407.	5.7	8

TAICHI FURUKAWA

#	Article	IF	CITATIONS
19	Multi-scale, multi-depth lithography using optical fibers for microfluidic applications. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	11
20	Cellular force assay detects altered contractility caused by a nephritisâ€associated mutation in nonmuscle myosin <scp>IIA</scp> . Development Growth and Differentiation, 2017, 59, 423-433.	1.5	11
21	The effect of mutations in nonmuscle myosin IIA on cell contractility. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2017, 2017.28, 2A24.	0.0	о
22	Multispectral Emissions of Lanthanide-Doped Gadolinium Oxide Nanophosphors for Cathodoluminescence and Near-Infrared Upconversion/Downconversion Imaging. Nanomaterials, 2016, 6, 163.	4.1	17
23	Synthesis of Y_2O_3 nanophosphors by homogeneous precipitation method using excessive urea for cathodoluminescence and upconversion luminescence bioimaging. Optical Materials Express, 2016, 6, 831.	3.0	15
24	Synthesis of Nanophosphors for Bioimaging using Electron Beam Excitation. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2016, 24, 85-91.	0.0	0
25	C6-P-04Tri-modal imaging techniques Cathodoluminescence (CL) - Near Infrared (NIR) and Magnetic resonance imaging (MRI) with lanthanides doped Gd ₂ O ₃ . Microscopy (Oxford,) Tj ETC)զ11.150.78	843 0 4 rgBT /O
26	Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope. Scientific Reports, 2015, 5, 16068.	3.3	11
27	C6-P-01Rare-earth doped Y ₂ O ₃ nano-phosphor probes for correlative cathodoluminescence and near-infrared optical bio-imaging. Microscopy (Oxford, England), 2015, 64, i140.2-i140.	1.5	Ο
28	Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy. Journal of Biomedical Optics, 2015, 20, 056007.	2.6	13
29	Fabrication of bright and thin Zn_2SiO_4 luminescent film for electron beam excitation-assisted optical microscope. Optics Express, 2015, 23, 18630.	3.4	9
30	Evaluation of cell damage induced by electron beam. , 2014, , .		0
31	Fabrication of ZnO luminescent films for nanometric light source of high-resolution optical microscope. , 2014, , .		Ο
32	Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging. Micron, 2014, 67, 90-95.	2.2	26
33	High-resolution microscopy for biological specimens via cathodoluminescence of Eu- and Zn-doped Y_2O_3nanophosphors. Optics Express, 2013, 21, 25655.	3.4	22
34	C212 Synthesis of bimodal nanophosphors with cathodoluminescence and upconversion luminescence for multi-scale bioimaging. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2013, 2013.24, 181-182.	0.0	0
35	Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors. Applied Physics Express, 2011, 4, 112402.	2.4	34
36	Polymerization Shrinkage Behavior of Light Cure Resin Composites in Cavities. Journal of Biomechanical Science and Engineering, 2009, 4, 356-364.	0.3	6