
Vinay Tergaonkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1920855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nature Plants, 2017, 3, 17053.	9.3	434
2	Chronic adipose tissue inflammation: all immune cells on the stage. Trends in Molecular Medicine, 2013, 19, 487-500.	6.7	239
3	Noncanonical NF-κB Signaling in Health and Disease. Trends in Molecular Medicine, 2016, 22, 414-429.	6.7	237
4	ATM- and NEMO-Dependent ELKS Ubiquitination Coordinates TAK1-Mediated IKK Activation inÂResponse to Genotoxic Stress. Molecular Cell, 2010, 40, 75-86.	9.7	184
5	Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis?. Cancer Letters, 2021, 509, 63-80.	7.2	166
6	Systematic Identification of Factors for Provirus Silencing in Embryonic Stem Cells. Cell, 2015, 163, 230-245.	28.9	162
7	Noncoding RNAs: Master Regulators of Inflammatory Signaling. Trends in Molecular Medicine, 2018, 24, 66-84.	6.7	150
8	Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology. Bioscience Reports, 2014, 34, .	2.4	130
9	Small Molecule NF-κB Pathway Inhibitors in Clinic. International Journal of Molecular Sciences, 2020, 21, 5164.	4.1	120
10	DEAD-box helicase DP103 defines metastatic potential of human breast cancers. Journal of Clinical Investigation, 2014, 124, 3807-3824.	8.2	118
11	Transcriptional Regulation of Telomerase Reverse Transcriptase (TERT) by MYC. Frontiers in Cell and Developmental Biology, 2017, 5, 1.	3.7	94
12	The transcriptional program, functional heterogeneity, and clinical targeting of mast cells. Journal of Experimental Medicine, 2017, 214, 2491-2506.	8.5	88
13	Hypoxia Induced ER Stress Response as an Adaptive Mechanism in Cancer. International Journal of Molecular Sciences, 2019, 20, 749.	4.1	85
14	Wanted DEAD/H or Alive: Helicases Winding Up in Cancers. Journal of the National Cancer Institute, 2017, 109, djw278.	6.3	79
15	The expanding roles of long non-coding RNAs in the regulation of cancer stem cells. International Journal of Biochemistry and Cell Biology, 2019, 108, 17-20.	2.8	78
16	Unraveling B cell trajectories at single cell resolution. Trends in Immunology, 2022, 43, 210-229.	6.8	78
17	Quantitative assessment of telomerase components in cancer cell lines. FEBS Letters, 2015, 589, 974-984.	2.8	68
18	HIFI-α activation underlies a functional switch in the paradoxical role of Ezh2/PRC2 in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3735-44.	7.1	62

VINAY TERGAONKAR

#	Article	IF	CITATIONS
19	Pharmacological significance of the non-canonical NF-κB pathway in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188449.	7.4	52
20	RNAi Reveals Phase-Specific Global Regulators of Human Somatic Cell Reprogramming. Cell Reports, 2016, 15, 2597-2607.	6.4	47
21	ROCK-mediated selective activation of PERK signalling causes fibroblast reprogramming and tumour progression through a CRELD2-dependent mechanism. Nature Cell Biology, 2020, 22, 882-895.	10.3	47
22	Non-coding RNA-based regulation of inflammation. Seminars in Immunology, 2022, 59, 101606.	5.6	40
23	PRDM15 safeguards naive pluripotency by transcriptionally regulating WNT and MAPK–ERK signaling. Nature Genetics, 2017, 49, 1354-1363.	21.4	39
24	Accumulation of JAK activation loop phosphorylation is linked to type I JAK inhibitor withdrawal syndrome in myelofibrosis. Science Advances, 2018, 4, eaat3834.	10.3	39
25	NUCKS Is a Positive Transcriptional Regulator of Insulin Signaling. Cell Reports, 2014, 7, 1876-1886.	6.4	38
26	Genome-wide Analyses of Chromatin State in Human Mast Cells Reveal Molecular Drivers and Mediators of Allergic and Inflammatory Diseases. Immunity, 2019, 51, 949-965.e6.	14.3	37
27	Rap1 regulates hematopoietic stem cell survival and affects oncogenesis and response to chemotherapy. Nature Communications, 2019, 10, 5349.	12.8	37
28	Mechanisms of allergen-specific immunotherapy for allergic rhinitis and food allergies. Bioscience Reports, 2020, 40, .	2.4	33
29	sORF-Encoded MicroPeptides: New players in inflammation, metabolism, and precision medicine. Cancer Letters, 2021, 500, 263-270.	7.2	29
30	PIP4K2A as a negative regulator of PI3K in PTEN <i>-</i> deficient glioblastoma. Journal of Experimental Medicine, 2019, 216, 1120-1134.	8.5	27
31	3D-printed microplate inserts for long term high-resolution imaging of live brain organoids. BMC Biomedical Engineering, 2021, 3, 6.	2.6	27
32	Understanding mast cell heterogeneity at single cell resolution. Trends in Immunology, 2021, 42, 523-535.	6.8	25
33	Targeting NF-κB Signaling for Multiple Myeloma. Cancers, 2020, 12, 2203.	3.7	24
34	GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ERα glycosylation and stability to cancer. Science Advances, 2021, 7, .	10.3	19
35	Rare variants in Fanconi anemia genes are enriched in acute myeloid leukemia. Blood Cancer Journal, 2018, 8, 50.	6.2	17
36	Dominant-negative NFKBIA mutation promotes IL-1Î ² production causing hepatic disease with severe immunodeficiency. Journal of Clinical Investigation, 2020, 130, 5817-5832.	8.2	17

VINAY TERGAONKAR

#	Article	IF	CITATIONS
37	Mast cells: Therapeutic targets for <scp>COVID</scp> â€19 and beyond. IUBMB Life, 2021, 73, 1278-1292.	3.4	14
38	Identification of mechanism of cancer-cell-specific reactivation of <i>hTERT</i> offers therapeutic opportunities for blocking telomerase specifically in human colorectal cancer. Nucleic Acids Research, 2023, 51, 1-16.	14.5	10
39	Hypothalamic NUCKS regulates peripheral glucose homoeostasis. Biochemical Journal, 2015, 469, 391-398.	3.7	9
40	ELKS1 controls mast cell degranulation by regulating the transcription of Stxbp2 and Syntaxin 4 via Kdm2b stabilization. Science Advances, 2020, 6, .	10.3	7
41	RNA helicase DP103 and TAK1: a new connection in cancer. Molecular and Cellular Oncology, 2015, 2, e985911.	0.7	5
42	When alpha meets beta, mast cells get hyper. Journal of Experimental Medicine, 2019, 216, 2229-2230.	8.5	2