Whitney A Bullock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1920729/publications.pdf

Version: 2024-02-01

1170033 1113639 16 242 9 15 citations h-index g-index papers 17 17 17 389 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Co-deletion of Lrp5 and Lrp6 in the skeleton severely diminishes bone gain from sclerostin antibody administration. Bone, 2021, 143, 115708.	1.4	11
2	Cancellous Bone May Have a Greater Adaptive Strain Threshold Than Cortical Bone. JBMR Plus, 2021, 5, e10489.	1.3	8
3	Improving Bone Health by Optimizing the Anabolic Action of <scp>Wnt</scp> Inhibitor Multitargeting. JBMR Plus, 2021, 5, e10462.	1.3	7
4	The <scp>mTORC2</scp> Component Rictor Is Required for Loadâ€Induced Bone Formation in Lateâ€Stage Skeletal Cells. JBMR Plus, 2020, 4, e10366.	1.3	10
5	Pten deletion in Dmp1â€expressing cells does not rescue the osteopenic effects of Wnt/βâ€catenin suppression. Journal of Cellular Physiology, 2020, 235, 9785-9794.	2.0	O
6	Notum Deletion From Late-Stage Skeletal Cells Increases Cortical Bone Formation and Potentiates Skeletal Effects of Sclerostin Inhibition. Journal of Bone and Mineral Research, 2020, 36, 2413-2425.	3.1	5
7	Twist1 Inactivation in Dmp1-Expressing Cells Increases Bone Mass but Does Not Affect the Anabolic Response to Sclerostin Neutralization. International Journal of Molecular Sciences, 2019, 20, 4427.	1.8	7
8	Lrp4 Mediates Bone Homeostasis and Mechanotransduction through Interaction with Sclerostin InÂVivo. IScience, 2019, 20, 205-215.	1.9	20
9	Expression of a Degradation-Resistant Î ² -Catenin Mutant in Osteocytes Protects the Skeleton From Mechanodeprivation-Induced Bone Wasting. Journal of Bone and Mineral Research, 2019, 34, 1964-1975.	3.1	10
10	Osteocytes and mechanical loading: The Wnt connection. Orthodontics and Craniofacial Research, 2019, 22, 175-179.	1.2	21
11	Adaptive changes in micromechanical environments of cancellous and cortical bone in response to in vivo loading and disuse. Journal of Biomechanics, 2019, 89, 85-94.	0.9	21
12	Induction of Lrp5 HBM-causing mutations in Cathepsin-K expressing cells alters bone metabolism. Bone, 2019, 120, 166-175.	1.4	12
13	Sclerostin neutralization unleashes the osteoanabolic effects of Dkk1 inhibition. JCl Insight, 2018, 3, .	2.3	63
14	WNT-mediated Modulation of Bone Metabolism: Implications for WNT Targeting to Treat Extraskeletal Disorders. Toxicologic Pathology, 2017, 45, 864-868.	0.9	7
15	Sost, independent of the non-coding enhancer ECR5, is required for bone mechanoadaptation. Bone, 2016, 92, 180-188.	1.4	18
16	Missense Mutations in LRP5 Associated with High Bone Mass Protect the Mouse Skeleton from Disuseand Ovariectomy-Induced Osteopenia. PLoS ONE, 2015, 10, e0140775.	1.1	21