
## Monika Mortimer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1920559/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of Toxicology, 2013, 87, 1181-1200.                  | 4.2  | 1,016     |
| 2  | Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution, 2010, 158, 41-47.                                                                                                     | 7.5  | 384       |
| 3  | Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology, 2010, 269, 182-189.                                                                                          | 4.2  | 302       |
| 4  | Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test<br>organisms and mammalian cells <i>in vitro</i> : A comparative review. Nanotoxicology, 2014, 8, 57-71.       | 3.0  | 297       |
| 5  | Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological<br>Hazards of Engineered Nanomaterials. Environmental Science & Technology, 2016, 50, 6124-6145.            | 10.0 | 191       |
| 6  | Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: Effects on Escherichia coli cells and fatty acids. Journal of Photochemistry and Photobiology B: Biology, 2015, 142, 178-185. | 3.8  | 190       |
| 7  | Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environmental Science: Nano, 2015, 2, 630-644.                                                                                     | 4.3  | 174       |
| 8  | Evaluation of Exposure Concentrations Used in Assessing Manufactured Nanomaterial Environmental<br>Hazards: Are They Relevant?. Environmental Science & Technology, 2014, 48, 10541-10551.                   | 10.0 | 169       |
| 9  | High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Toxicology in Vitro, 2008, 22, 1412-1417.                                              | 2.4  | 144       |
| 10 | Adaptive Interactions between Zinc Oxide Nanoparticles and <i>Chlorella</i> sp Environmental Science & Technology, 2012, 46, 12178-12185.                                                                    | 10.0 | 139       |
| 11 | NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials. Beilstein Journal of<br>Nanotechnology, 2015, 6, 1788-1804.                                                                    | 2.8  | 116       |
| 12 | Parabens as chemicals of emerging concern in the environment and humans: A review. Science of the<br>Total Environment, 2021, 778, 146150.                                                                   | 8.0  | 116       |
| 13 | Exposure to CuO Nanoparticles Changes the Fatty Acid Composition of Protozoa <i>Tetrahymena thermophila</i> . Environmental Science & amp; Technology, 2011, 45, 6617-6624.                                  | 10.0 | 105       |
| 14 | Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry<br>Soil. Environmental Science & Technology, 2016, 50, 3965-3974.                                             | 10.0 | 91        |
| 15 | Potential of Hyperspectral Imaging Microscopy for Semi-quantitative Analysis of Nanoparticle Uptake<br>by Protozoa. Environmental Science & Technology, 2014, 48, 8760-8767.                                 | 10.0 | 84        |
| 16 | Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade.<br>Nano Today, 2021, 39, 101184.                                                                              | 11.9 | 67        |
| 17 | Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization. Soil Ecology Letters, 2019, 1, 85-93.                                                               | 4.5  | 62        |
| 18 | Bioaccumulation of Multiwall Carbon Nanotubes in <i>Tetrahymena thermophila</i> by Direct Feeding<br>or Trophic Transfer. Environmental Science & Technology, 2016, 50, 8876-8885.                           | 10.0 | 61        |

Monika Mortimer

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The exopolysaccharide–eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm. BMC<br>Microbiology, 2020, 20, 115.                                                                                           | 3.3  | 56        |
| 20 | Towards a better understanding of Pseudomonas putida biofilm formation in the presence of ZnO nanoparticles (NPs): Role of NP concentration. Environment International, 2020, 137, 105485.                                   | 10.0 | 49        |
| 21 | Strategies for robust and accurate experimental approaches to quantify nanomaterial<br>bioaccumulation across a broad range of organisms. Environmental Science: Nano, 2019, 6, 1619-1656.                                   | 4.3  | 48        |
| 22 | Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity.<br>Nanotechnology, 2013, 24, 345101.                                                                                           | 2.6  | 47        |
| 23 | NanoEHS beyond toxicity – focusing on biocorona. Environmental Science: Nano, 2017, 4, 1433-1454.                                                                                                                            | 4.3  | 43        |
| 24 | Multiwall Carbon Nanotubes Induce More Pronounced Transcriptomic Responses in <i>Pseudomonas<br/>aeruginosa</i> PG201 than Graphene, Exfoliated Boron Nitride, or Carbon Black. ACS Nano, 2018, 12,<br>2728-2740.            | 14.6 | 42        |
| 25 | Mechanisms of toxic action of silver nanoparticles in the protozoan Tetrahymena thermophila : From gene expression to phenotypic events. Environmental Pollution, 2017, 225, 481-489.                                        | 7.5  | 41        |
| 26 | Identification and characterization of an arachidonate 11R-lipoxygenase. Archives of Biochemistry and<br>Biophysics, 2006, 445, 147-155.                                                                                     | 3.0  | 37        |
| 27 | Antibacterial nanomaterials for environmental and consumer product applications. NanoImpact, 2020, 20, 100268.                                                                                                               | 4.5  | 37        |
| 28 | Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet<br>amyloid polypeptide. Nano Research, 2019, 12, 2827-2834.                                                                  | 10.4 | 34        |
| 29 | Uptake, localization and clearance of quantum dots in ciliated protozoa Tetrahymena thermophila.<br>Environmental Pollution, 2014, 190, 58-64.                                                                               | 7.5  | 31        |
| 30 | Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for<br>Microbial Toxicity Testing. Nanomaterials, 2018, 8, 76.                                                                  | 4.1  | 30        |
| 31 | Implications of the Human Gut–Brain and Gut–Cancer Axes for Future Nanomedicine. ACS Nano, 2020,<br>14, 14391-14416.                                                                                                         | 14.6 | 30        |
| 32 | Extraction of extracellular polymeric substances (EPS) from red soils (Ultisols). Soil Biology and<br>Biochemistry, 2019, 135, 283-285.                                                                                      | 8.8  | 28        |
| 33 | Toxicity of five anilines to crustaceans, protozoa and bacteria. Journal of the Serbian Chemical Society, 2010, 75, 1291-1302.                                                                                               | 0.8  | 27        |
| 34 | Extracellular conversion of silver ions into silver nanoparticles by protozoan Tetrahymena thermophila. Environmental Sciences: Processes and Impacts, 2013, 15, 244-250.                                                    | 3.5  | 26        |
| 35 | Physical Properties of Carbon Nanomaterials and Nanoceria Affect Pathways Important to the<br>Nodulation Competitiveness of the Symbiotic N 2 â€Fixing Bacterium Bradyrhizobium diazoefficiens.<br>Small, 2020, 16, 1906055. | 10.0 | 26        |
| 36 | Humic acids restrict the transformation and the stabilization of Cd by iron (hydr)oxides. Journal of<br>Hazardous Materials, 2022, 430, 128365.                                                                              | 12.4 | 25        |

Monika Mortimer

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation.<br>Nanomaterials, 2016, 6, 181.                                                                    | 4.1  | 24        |
| 38 | Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots. Nanoscale, 2020, 12, 12317-12328.                                     | 5.6  | 23        |
| 39 | Interplay between engineered nanomaterials and microbiota. Environmental Science: Nano, 2020, 7, 2454-2485.                                                                                  | 4.3  | 21        |
| 40 | Evaluation of frameworks proposed as protective of antimicrobial resistance propagation in the environment. Environment International, 2020, 144, 106053.                                    | 10.0 | 20        |
| 41 | Nanomaterials as novel agents for amelioration of Parkinson's disease. Nano Today, 2021, 41, 101328.                                                                                         | 11.9 | 18        |
| 42 | Functional group diversity for the adsorption of lead(Pb) to bacterial cells and extracellular polymeric substances. Environmental Pollution, 2022, 295, 118651.                             | 7.5  | 18        |
| 43 | Molecular Mechanisms of Nanomaterial-Bacterial Interactions Revealed by Omics—The Role of<br>Nanomaterial Effect Level. Frontiers in Bioengineering and Biotechnology, 2021, 9, 683520.      | 4.1  | 13        |
| 44 | Chemical transformations of nanoscale zinc oxide in simulated sweat and its impact on the antibacterial efficacy. Journal of Hazardous Materials, 2021, 410, 124568.                         | 12.4 | 12        |
| 45 | Transcriptomic responses to silver nanoparticles in the freshwater unicellular eukaryote<br>Tetrahymena thermophila. Environmental Pollution, 2021, 269, 115965.                             | 7.5  | 12        |
| 46 | Impact of metal oxide nanoparticles on in vitro DNA amplification. PeerJ, 2019, 7, e7228.                                                                                                    | 2.0  | 12        |
| 47 | Fate of engineered nanomaterials in natural environments and impacts on ecosystems. , 2019, , 61-103.                                                                                        |      | 11        |
| 48 | Engineered nanomaterials and symbiotic dinitrogen fixation in legumes. Current Opinion in<br>Environmental Science and Health, 2018, 6, 54-59.                                               | 4.1  | 10        |
| 49 | Interspecific interactions in dual-species biofilms of soil bacteria: effects of fertilization practices.<br>Journal of Soils and Sediments, 2020, 20, 1494-1501.                            | 3.0  | 6         |
| 50 | Uptake and depuration of carbon- and boron nitride-based nanomaterials in the protozoa<br><i>Tetrahymena thermophila</i> . Environmental Science: Nano, 2021, 8, 3613-3628.                  | 4.3  | 6         |
| 51 | Stability of Titanium Dioxide Nanoparticle Agglomerates in Transitional Waters and Their Effects<br>Towards Plankton from Lagoon of Venice (Italy). Aquatic Geochemistry, 2015, 21, 343-362. | 1.3  | 4         |
| 52 | Zooming in to acquire micro-reaction: Application of microfluidics on soil microbiome. Soil Ecology<br>Letters, 2022, 4, 213-223.                                                            | 4.5  | 3         |
| 53 | Omics Approaches in Toxicological Studies. , 2022, , 61-94.                                                                                                                                  |      | 3         |
| 54 | Bioavailability and toxicity of copper oxide and silver nanoparticles to bacteria, yeasts, crustaceans<br>and protozoa. Toxicology Letters, 2011, 205, S284-S285.                            | 0.8  | 1         |

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Advances in Nanotoxicology: Towards Enhanced Environmental and Physiological Relevance and<br>Molecular Mechanisms. Nanomaterials, 2021, 11, 919. | 4.1 | 1         |