
## Ferdinand MolnÃ;r

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1920508/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Human Peroxisome Proliferator-activated Receptor δ Gene is a Primary Target of<br>1α,25-Dihydroxyvitamin D3 and its Nuclear Receptor. Journal of Molecular Biology, 2005, 349, 248-260.           | 4.2 | 180       |
| 2  | 25-Hydroxyvitamin D3 is an agonistic vitamin D receptor ligand. Journal of Steroid Biochemistry and<br>Molecular Biology, 2010, 118, 162-170.                                                         | 2.5 | 130       |
| 3  | Current Status of Vitamin D Signaling and Its Therapeutic Applications. Current Topics in Medicinal Chemistry, 2012, 12, 528-547.                                                                     | 2.1 | 92        |
| 4  | 1α,25(OH)2-3-Epi-Vitamin D3, a Natural Physiological Metabolite of Vitamin D3: Its Synthesis, Biological<br>Activity and Crystal Structure with Its Receptor. PLoS ONE, 2011, 6, e18124.              | 2.5 | 75        |
| 5  | Vitamin D and Its Synthetic Analogs. Journal of Medicinal Chemistry, 2019, 62, 6854-6875.                                                                                                             | 6.4 | 74        |
| 6  | Structural Determinants of the Agonist-independent Association of Human Peroxisome<br>Proliferator-activated Receptors with Coactivators. Journal of Biological Chemistry, 2005, 280,<br>26543-26556. | 3.4 | 62        |
| 7  | Vitamin D receptor 2016: novel ligands and structural insights. Expert Opinion on Therapeutic Patents, 2016, 26, 1291-1306.                                                                           | 5.0 | 56        |
| 8  | Vitamin D Receptor Agonists Specifically Modulate the Volume of the Ligand-binding Pocket. Journal of Biological Chemistry, 2006, 281, 10516-10526.                                                   | 3.4 | 52        |
| 9  | Vitamin D receptor ligands: the impact of crystal structures. Expert Opinion on Therapeutic Patents, 2012, 22, 417-435.                                                                               | 5.0 | 50        |
| 10 | Structural considerations of vitamin D signaling. Frontiers in Physiology, 2014, 5, 191.                                                                                                              | 2.8 | 47        |
| 11 | A Vitamin D Receptor Selectively Activated by Gemini Analogs Reveals Ligand Dependent and<br>Independent Effects. Cell Reports, 2015, 10, 516-526.                                                    | 6.4 | 45        |
| 12 | Antagonist- and Inverse Agonist-Driven Interactions of the Vitamin D Receptor and the Constitutive Androstane Receptor with Corepressor Protein. Molecular Endocrinology, 2005, 19, 2258-2272.        | 3.7 | 43        |
| 13 | Vitamin D receptor signaling and its therapeutic implications: Genome-wide and structural view.<br>Canadian Journal of Physiology and Pharmacology, 2015, 93, 311-318.                                | 1.4 | 43        |
| 14 | An update on the constitutive androstane receptor (CAR). Drug Metabolism and Drug Interactions, 2013, 28, 79-93.                                                                                      | 0.3 | 40        |
| 15 | Detailed Molecular Understanding of Agonistic and Antagonistic Vitamin D Receptor Ligands. Current<br>Topics in Medicinal Chemistry, 2006, 6, 1243-1253.                                              | 2.1 | 38        |
| 16 | Use of comprehensive screening methods to detect selective human CAR activators. Biochemical<br>Pharmacology, 2011, 82, 1994-2007.                                                                    | 4.4 | 38        |
| 17 | New <i>in Vitro</i> Tools to Study Human Constitutive Androstane Receptor (CAR) Biology: Discovery and Comparison of Human CAR Inverse Agonists. Molecular Pharmaceutics, 2011, 8, 2424-2433.         | 4.6 | 37        |
| 18 | A Structural Basis for the Species-Specific Antagonism of 26,23-Lactones on Vitamin D Signaling.<br>Chemistry and Biology, 2004, 11, 1147-1156.                                                       | 6.0 | 32        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effects of cooling rate in microscale and pilot scale freeze-drying – Variations in excipient polymorphs and protein secondary structure. European Journal of Pharmaceutical Sciences, 2016, 95, 72-81.             | 4.0 | 31        |
| 20 | Structural aspects of Vitamin D endocrinology. Molecular and Cellular Endocrinology, 2017, 453, 22-35.                                                                                                              | 3.2 | 29        |
| 21 | Agonist-dependent and Agonist-independent Transactivations of the Human Constitutive Androstane<br>Receptor Are Modulated by Specific Amino Acid Pairs. Journal of Biological Chemistry, 2004, 279,<br>33558-33566. | 3.4 | 22        |
| 22 | Molecular mechanism of allosteric communication in the human PPARαâ€RXRα heterodimer. Proteins:<br>Structure, Function and Bioinformatics, 2010, 78, 873-887.                                                       | 2.6 | 19        |
| 23 | Human Epigenomics. , 2018, , .                                                                                                                                                                                      |     | 17        |
| 24 | Mechanisms of Gene Regulation. , 2016, , .                                                                                                                                                                          |     | 15        |
| 25 | Design, Synthesis, Evaluation, and Structure of Vitaminâ€D Analogues with Furan Side Chains. Chemistry<br>- A European Journal, 2012, 18, 603-612.                                                                  | 3.3 | 14        |
| 26 | AROS has a contextâ€dependent effect on SIRT1. FEBS Letters, 2014, 588, 1523-1528.                                                                                                                                  | 2.8 | 13        |
| 27 | Cathepsin G and its Dichotomous Role in Modulating Levels of MHC Class I Molecules. Archivum<br>Immunologiae Et Therapiae Experimentalis, 2020, 68, 25.                                                             | 2.3 | 12        |
| 28 | Structural attributes of model protein formulations prepared by rapid freeze-drying cycles in a microscale heating stage. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 347-356.                | 4.3 | 9         |
| 29 | Characterization of ligand-dependent activation of bovine and pig constitutive androstane (CAR) and pregnane X receptors (PXR) with interspecies comparisons. Xenobiotica, 2016, 46, 200-210.                       | 1.1 | 9         |
| 30 | Human Epigenetics: How Science Works. , 2019, , .                                                                                                                                                                   |     | 5         |
| 31 | Nutrigenomics: How Science Works. , 2020, , .                                                                                                                                                                       |     | 5         |
| 32 | Impact of Microscale and Pilot-Scale Freeze-Drying on Protein Secondary Structures: Sucrose<br>Formulations of Lysozyme and Catalase. Journal of Pharmaceutical Sciences, 2015, 104, 3710-3721.                     | 3.3 | 4         |
| 33 | Transmol: repurposing a language model for molecular generation. RSC Advances, 2021, 11, 25921-25932.                                                                                                               | 3.6 | 4         |
| 34 | The Basis for Strain-Dependent Rat Aldehyde Dehydrogenase 1A7 ( <i>ALDH1A7</i> ) Gene Expression.<br>Molecular Pharmacology, 2019, 96, 655-663.                                                                     | 2.3 | 1         |
| 35 | Functional Characterization of a Novel Variant of the Constitutive Androstane Receptor (CAR, NR113).<br>Nuclear Receptor Research, 2018, 5, .                                                                       | 2.5 | 1         |
| 36 | Switching Genes on and off: The Example of Nuclear Receptors. , 2014, , 91-104.                                                                                                                                     |     | 0         |

| #  | Article                                                                         | IF | CITATIONS |
|----|---------------------------------------------------------------------------------|----|-----------|
| 37 | Switching Genes On and Off: The Example of Nuclear Receptors. , 2016, , 95-108. |    | 0         |
| 38 | Regulatory Impact of Non-coding RNA. , 2020, , 129-142.                         |    | 0         |
| 39 | Chromatin Remodeling and Organization. , 2020, , 115-128.                       |    | ο         |
| 40 | Chromatin Modifiers. , 2020, , 83-98.                                           |    | 0         |
| 41 | Genome-Wide Principles of Gene Regulation. , 2020, , 71-82.                     |    | Ο         |
| 42 | A Key Transcription Factor Family: Nuclear Receptors. , 2020, , 59-70.          |    | 0         |