Clive A Prestidge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/192039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An <i>ex Vivo</i> Model Enables Systematic Investigation of the Intestinal Absorption and Transcytosis of Oral Particulate Nanocarriers. ACS Biomaterials Science and Engineering, 2023, 9, 2857-2867.	5.2	3
2	Mimicking the Gastrointestinal Mucus Barrier: Laboratory-Based Approaches to Facilitate an Enhanced Understanding of Mucus Permeation. ACS Biomaterials Science and Engineering, 2023, 9, 2819-2837.	5.2	9
3	Smart design approaches for orally administered lipophilic prodrugs to promote lymphatic transport. Journal of Controlled Release, 2022, 341, 676-701.	9.9	16
4	Chitosan nanoparticles facilitate improved intestinal permeation and oral pharmacokinetics of the mast cell stabiliser cromoglycate. International Journal of Pharmaceutics, 2022, 612, 121382.	5.2	4
5	Liposomal 5-Fluorouracil Polymer Complexes Facilitate Tumor-Specific Delivery: Pharmaco-Distribution Kinetics Using Microdialysis. Pharmaceutics, 2022, 14, 221.	4.5	4
6	Mechanisms of uptake and transport of particulate formulations in the small intestine. Journal of Controlled Release, 2022, 343, 584-599.	9.9	15
7	Liquid Crystal Nanoparticles Enhance Tobramycin Efficacy in a Murine Model of <i>Pseudomonas aeruginosa</i> Biofilm Wound Infection. ACS Infectious Diseases, 2022, 8, 841-854.	3.8	8
8	PAMAM versus PEI complexation for siRNA delivery: interaction with model lipid membranes and cellular uptake. Pharmaceutical Research, 2022, 39, 1151-1163.	3.5	4
9	Role of Silica Intrawall Microporosity on Abiraterone Acetate Solubilization and <i>In Vivo</i> Oral Absorption. Molecular Pharmaceutics, 2022, 19, 1091-1103.	4.6	2
10	Bio-enabling strategies to mitigate the pharmaceutical food effect: A mini review. International Journal of Pharmaceutics, 2022, 619, 121695.	5.2	4
11	Liquid crystal nanoparticle platform for increased efficacy of cationic antimicrobials against biofilm infections. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102536.	3.3	4
12	Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. Journal of Controlled Release, 2022, 346, 300-316.	9.9	30
13	Liquid crystalline lipid nanoparticle promotes the photodynamic activity of gallium protoporphyrin against S. aureus biofilms. Journal of Photochemistry and Photobiology B: Biology, 2022, 232, 112474.	3.8	6
14	A Comparison of Chitosan, Mesoporous Silica and Poly(lactic-co-glycolic) Acid Nanocarriers for Optimising Intestinal Uptake of Oral Protein Therapeutics. Journal of Pharmaceutical Sciences, 2021, 110, 217-227.	3.3	9
15	The Influence of Solidification on the in vitro Solubilisation of Blonanserin Loaded Supersaturated Lipid-Based Oral Formulations. European Journal of Pharmaceutical Sciences, 2021, 157, 105640.	4.0	3
16	An ex vivo investigation of the intestinal uptake and translocation of nanoparticles targeted to Peyer's patches microfold cells. International Journal of Pharmaceutics, 2021, 594, 120167.	5.2	8
17	A safety, tolerability, and pharmacokinetic study of a novel simvastatin silica-lipid hybrid formulation in healthy male participants. Drug Delivery and Translational Research, 2021, 11, 1261-1272.	5.8	20
18	Toll-like receptor 4 (TLR4) antagonists as potential therapeutics for intestinal inflammation. Indian Journal of Gastroenterology, 2021, 40, 5-21.	1.4	38

#	Article	IF	CITATIONS
19	Nano-fats for bugs: the benefits of lipid nanoparticles for antimicrobial therapy. Drug Delivery and Translational Research, 2021, 11, 1598-1624.	5.8	27
20	Polymeric micelles with anti-virulence activity against Candida albicans in a single- and dual-species biofilm. Drug Delivery and Translational Research, 2021, 11, 1586-1597.	5.8	10
21	"Mucus-on-Chipâ€ŧ A new tool to study the dynamic penetration of nanoparticulate drug carriers into mucus. International Journal of Pharmaceutics, 2021, 598, 120391.	5.2	18
22	Protective Liquid Crystal Nanoparticles for Targeted Delivery of PslG: A Biofilm Dispersing Enzyme. ACS Infectious Diseases, 2021, 7, 2102-2115.	3.8	18
23	Tobramycin Liquid Crystal Nanoparticles Eradicate Cystic Fibrosisâ€Related <i>Pseudomonas aeruginosa</i> Biofilms. Small, 2021, 17, e2100531.	10.0	37
24	Colloidal silver combating pathogenic Pseudomonas aeruginosa and MRSA in chronic rhinosinusitis. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111675.	5.0	17
25	Enhancing the therapeutic use of biofilm-dispersing enzymes with smart drug delivery systems. Advanced Drug Delivery Reviews, 2021, 179, 113916.	13.7	32
26	Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Advanced Drug Delivery Reviews, 2021, 177, 113948.	13.7	45
27	Harnessing the potential of nanostructured formulations to mimic the food effect of lurasidone. International Journal of Pharmaceutics, 2021, 608, 121098.	5.2	5
28	Development and In Vitro Evaluation of 5-Fluorouracil-Eluting Stents for the Treatment of Colorectal Cancer and Cancer-Related Obstruction. Pharmaceutics, 2021, 13, 17.	4.5	16
29	A self-emulsifying Omega-3 ethyl ester formulation (AquaCelle) significantly improves eicosapentaenoic and docosahexaenoic acid bioavailability in healthy adults. European Journal of Nutrition, 2020, 59, 2729-2737.	3.9	14
30	Inhibition of <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> biofilms by quatsomes in low concentrations. Experimental Biology and Medicine, 2020, 245, 34-41.	2.4	15
31	Bacterial lipase triggers the release of antibiotics from digestible liquid crystal nanoparticles. Journal of Controlled Release, 2020, 319, 168-182.	9.9	34
32	The effect of drug ionization on lipid-lased formulations for the oral delivery of anti-psychotics. ADMET and DMPK, 2020, 8, 437-451.	2.1	2
33	Contrasting Anti-obesity Effects of Smectite Clays and Mesoporous Silica in Sprague-Dawley Rats. ACS Applied Bio Materials, 2020, 3, 7779-7788.	4.6	7
34	Porous Nanostructure, Lipid Composition, and Degree of Drug Supersaturation Modulate In Vitro Fenofibrate Solubilization in Silica-Lipid Hybrids. Pharmaceutics, 2020, 12, 687.	4.5	6
35	A liposome-micelle-hybrid (LMH) oral delivery system for poorly water-soluble drugs: Enhancing solubilisation and intestinal transport. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 338-347.	4.3	23
36	Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips. MethodsX, 2020, 7, 100980.	1.6	5

3

#	Article	IF	CITATIONS
37	Enhancing the Cellular Uptake and Antibacterial Activity of Rifampicin through Encapsulation in Mesoporous Silica Nanoparticles. Nanomaterials, 2020, 10, 815.	4.1	24
38	In Vitro Performance and Chemical Stability of Lipid-Based Formulations Encapsulated in a Mesoporous Magnesium Carbonate Carrier. Pharmaceutics, 2020, 12, 426.	4.5	7
39	Oral delivery of protein-based therapeutics: Gastroprotective strategies, physiological barriers and in vitro permeability prediction. International Journal of Pharmaceutics, 2020, 585, 119488.	5.2	22
40	Engineering PLGA–Lipid Hybrid Microparticles for Enhanced Macrophage Uptake. ACS Applied Bio Materials, 2020, 3, 4159-4167.	4.6	14
41	Copolymeric Micelles Overcome the Oral Delivery Challenges of Amphotericin B. Pharmaceuticals, 2020, 13, 121.	3.8	15
42	Microporosity, Pore Size, and Diffusional Path Length Modulate Lipolysis Kinetics of Triglycerides Adsorbed onto SBA-15 Mesoporous Silica Particles. Langmuir, 2020, 36, 3367-3376.	3.5	7
43	Polymer lipid hybrid (PLH) formulations. , 2020, , 1-27.		1
44	Oral formulation strategies to improve the bioavailability and mitigate the food effect of abiraterone acetate. International Journal of Pharmaceutics, 2020, 577, 119069.	5.2	36
45	pH-Responsive copolymer micelles to enhance itraconazole efficacy against <i>Candida albicans</i> biofilms. Journal of Materials Chemistry B, 2020, 8, 1672-1681.	5.8	26
46	Poly(lactic- <i>co</i> -glycolic) Acid–Lipid Hybrid Microparticles Enhance the Intracellular Uptake and Antibacterial Activity of Rifampicin. ACS Applied Materials & Interfaces, 2020, 12, 8030-8039.	8.0	34
47	Biomaterials that regulate fat digestion for the treatment of obesity. Trends in Food Science and Technology, 2020, 100, 235-245.	15.1	17
48	Supersaturated-Silica Lipid Hybrids Improve in Vitro Solubilization of Abiraterone Acetate. Pharmaceutical Research, 2020, 37, 77.	3.5	9
49	Enhancement of abiraterone acetate oral bioavailability by supersaturated-silica lipid hybrids. International Journal of Pharmaceutics, 2020, 582, 119264.	5.2	16
50	Unlocking the Potential of Organâ€onâ€Chip Models through Pumpless and Tubeless Microfluidics. Advanced Healthcare Materials, 2020, 9, e1901784.	7.6	20
51	Preparation, Physicochemical Characterisation and DoE Optimisation of a Spray-Dried Dry Emulsion Platform for Delivery of a Poorly Soluble Drug, Simvastatin. AAPS PharmSciTech, 2020, 21, 119.	3.3	16
52	Enhancing the oral bioavailability of simvastatin with silica-lipid hybrid particles: The effect of supersaturation and silica geometry. European Journal of Pharmaceutical Sciences, 2020, 150, 105357.	4.0	19
53	A systematic investigation of the effect of the fluid shear stress on Caco-2â€ [−] cells towards the optimization of epithelial organ-on-chip models. Biomaterials, 2019, 225, 119521.	11.4	98
54	Enzyme responsive copolymer micelles enhance the anti-biofilm efficacy of the antiseptic chlorhexidine. International Journal of Pharmaceutics, 2019, 566, 329-341.	5.2	30

#	Article	IF	CITATIONS
55	Nanostructured clay particles supplement orlistat action in inhibiting lipid digestion: An in vitro evaluation for the treatment of obesity. European Journal of Pharmaceutical Sciences, 2019, 135, 1-11.	4.0	9
56	Uptake of silica particulate drug carriers in an intestine-on-a-chip: towards a better in vitro model of nanoparticulate carrier and mucus interactions. Biomaterials Science, 2019, 7, 2410-2420.	5.4	27
57	Identifying human and murine M cells <i>in vitro</i> . Experimental Biology and Medicine, 2019, 244, 554-564.	2.4	5
58	An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opinion on Drug Delivery, 2019, 16, 507-524.	5.0	38
59	Rifampicin-Loaded Mesoporous Silica Nanoparticles for the Treatment of Intracellular Infections. Antibiotics, 2019, 8, 39.	3.7	45
60	Controlling and Predicting the Dissolution Kinetics of Thermally Oxidised Mesoporous Silicon Particles: Towards Improved Drug Delivery. Pharmaceutics, 2019, 11, 634.	4.5	5
61	Bioavailability and palatability of praziquantel incorporated into solid-lipid nanoparticles fed to yellowtail kingfish Seriola lalandi. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 218, 14-20.	2.6	7
62	Supersaturated Silica-Lipid Hybrid Oral Drug Delivery Systems: Balancing Drug Loading and In Vivo Performance. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 742-750.	2.5	10
63	Improving Correlations Between Drug Solubilization and InÂVitro Lipolysis by Monitoring the Phase Partitioning of Lipolytic Species for Lipid-Based Formulations. Journal of Pharmaceutical Sciences, 2019, 108, 295-304.	3.3	14
64	Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: opportunities and challenges. Drug Development and Industrial Pharmacy, 2019, 45, 349-358.	2.0	56
65	Spray Dried Smectite Clay Particles as a Novel Treatment against Obesity. Pharmaceutical Research, 2019, 36, 21.	3.5	15
66	Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Advanced Drug Delivery Reviews, 2019, 142, 102-117.	13.7	76
67	Ramizol® encapsulation into extended release PLGA micro- and nanoparticle systems for subcutaneous and intramuscular administration: in vitro and in vivo evaluation. Drug Development and Industrial Pharmacy, 2018, 44, 1451-1457.	2.0	15
68	Supersaturated silica-lipid hybrids (super-SLH): An improved solid-state lipid-based oral drug delivery system with enhanced drug loading. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 125, 13-20.	4.3	38
69	Mechanistic studies of the antibiofilm activity and synergy with antibiotics of isosorbide mononitrate. European Journal of Pharmaceutical Sciences, 2018, 115, 50-56.	4.0	7
70	Synergistic effect of PLGA nanoparticles and submicron triglyceride droplets in enhancing the intestinal solubilisation of a lipophilic weak base. European Journal of Pharmaceutical Sciences, 2018, 118, 40-48.	4.0	16
71	Penetration of topically used antimicrobials through Staphylococcus aureus biofilms: A comparative study using different models. Journal of Drug Delivery Science and Technology, 2018, 48, 429-436.	3.0	9
72	Minimum information reporting in bio–nano experimental literature. Nature Nanotechnology, 2018, 13, 777-785.	31.5	455

#	Article	IF	CITATIONS
73	Nanocrystal-silica-lipid hybrid particles for the improved oral delivery of ziprasidone in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 145-153.	4.3	15
74	Enhancing the lipase-mediated bioaccessibility of omega-3 fatty acids by microencapsulation of fish oil droplets within porous silica particles. Journal of Functional Foods, 2018, 47, 491-502.	3.4	24
75	Montmorillonite and Laponite Clay Materials for the Solidification of Lipid-Based Formulations for the Basic Drug Blonanserin: In Vitro and in Vivo Investigations. Molecular Pharmaceutics, 2018, 15, 4148-4160.	4.6	17
76	Engineering intelligent particle-lipid composites that control lipase-mediated digestion. Advances in Colloid and Interface Science, 2018, 260, 1-23.	14.7	20
77	Safety and Efficacy of Topical Chitogel- Deferiprone-Gallium Protoporphyrin in Sheep Model. Frontiers in Microbiology, 2018, 9, 917.	3.5	13
78	<i>Pseudomonas</i> Infection Responsive Liquid Crystals for Glycoside Hydrolase and Antibiotic Combination. ACS Applied Bio Materials, 2018, 1, 281-288.	4.6	13
79	Osteoblast derived-neurotrophin‑3 induces cartilage removal proteases and osteoclast-mediated function at injured growth plate in rats. Bone, 2018, 116, 232-247.	2.9	15
80	Inorganic surface chemistry and nanostructure controls lipolytic product speciation and partitioning during the digestion of inorganic-lipid hybrid particles. Journal of Colloid and Interface Science, 2018, 532, 666-679.	9.4	16
81	Biodegradable nitric oxide precursor-loaded micro- and nanoparticles for the treatment of <i>Staphylococcus aureus</i> biofilms. Journal of Materials Chemistry B, 2017, 5, 1005-1014.	5.8	25
82	A Topical Hydrogel with Deferiprone and Gallium-Protoporphyrin Targets Bacterial Iron Metabolism and Has Antibiofilm Activity. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	58
83	Montmorillonite-lipid hybrid carriers for ionizable and neutral poorly water-soluble drugs: Formulation, characterization and in vitro lipolysis studies. International Journal of Pharmaceutics, 2017, 526, 95-105.	5.2	25
84	Taking the Silver Bullet Colloidal Silver Particles for the Topical Treatment of Biofilm-Related Infections. ACS Applied Materials & Interfaces, 2017, 9, 21631-21638.	8.0	43
85	Intestine-on-a-Chip Microfluidic Model for Efficient in Vitro Screening of Oral Chemotherapeutic Uptake. ACS Biomaterials Science and Engineering, 2017, 3, 951-959.	5.2	78
86	Dualâ€Action Cancer Therapy with Targeted Porous Silicon Nanovectors. Small, 2017, 13, 1701201.	10.0	31
87	Comparison across Three Hybrid Lipid-Based Drug Delivery Systems for Improving the Oral Absorption of the Poorly Water-Soluble Weak Base Cinnarizine. Molecular Pharmaceutics, 2017, 14, 4008-4018.	4.6	20
88	Modulating the Lipaseâ€Mediated Bioactivity of Particle‣ipid Conjugates Through Changes in Nanostructure and Surface Chemistry. European Journal of Lipid Science and Technology, 2017, 119, 1700213.	1.5	10
89	Controlled and Localized Nitric Oxide Precursor Delivery From Chitosan Gels to Staphylococcus aureus Biofilms. Journal of Pharmaceutical Sciences, 2017, 106, 3556-3563.	3.3	12
90	Interfacial analysis of siRNA complexes with poly-ethylenimine (PEI) or PAMAM dendrimers in gene delivery. Colloids and Surfaces B: Biointerfaces, 2017, 158, 370-378.	5.0	9

#	Article	IF	CITATIONS
91	Synergistic role of solid lipid and porous silica in improving the oral delivery of weakly basic poorly water soluble drugs. European Journal of Pharmaceutical Sciences, 2017, 96, 508-514.	4.0	19
92	Deferiprone and Gallium-Protoporphyrin Have the Capacity to Potentiate the Activity of Antibiotics in Staphylococcus aureus Small Colony Variants. Frontiers in Cellular and Infection Microbiology, 2017, 7, 280.	3.9	47
93	A Nanostructured Silica-Lipid Hybrid to Facilitate Oral SN-38-based Chemotherapy. Drug Delivery Letters, 2016, 6, 11-17.	0.5	1
94	Recent Trends on the Use of Nanoparticles for Nitric Oxide Delivery in Antimicrobial Applications. Drug Delivery Letters, 2016, 6, 3-10.	0.5	4
95	Development of a Multi-Compartmental Oral Vaccine Delivery System. Drug Delivery Letters, 2016, 6, 57-62.	0.5	1
96	Nanostructured Montmorillonite Clay for Controlling the Lipase-Mediated Digestion of Medium Chain Triglycerides. ACS Applied Materials & amp; Interfaces, 2016, 8, 32732-32742.	8.0	36
97	Preclinical development of Ramizol, an antibiotic belonging to a new class, for the treatment of Clostridium difficile colitis. Journal of Antibiotics, 2016, 69, 879-884.	2.0	18
98	Porous Silica-Supported Solid Lipid Particles for Enhanced Solubilization of Poorly Soluble Drugs. AAPS Journal, 2016, 18, 876-885.	4.4	7
99	Interfacial processes that modulate the kinetics of lipase-mediated catalysis using porous silica host particles. RSC Advances, 2016, 6, 43802-43813.	3.6	27
100	Enabling Oral SN38-Based Chemotherapy with a Combined Lipophilic Prodrug and Self-Microemulsifying Drug Delivery System. Molecular Pharmaceutics, 2016, 13, 3518-3525.	4.6	41
101	Mass Spectrometry Imaging of Pharmaceuticals: From Tablets to Tissues. Advances in Delivery Science and Technology, 2016, , 629-647.	0.4	3
102	Porous nanostructure controls kinetics, disposition and self-assembly structure of lipid digestion products. RSC Advances, 2016, 6, 78385-78395.	3.6	33
103	Impact of PEGylation and non-ionic surfactants on the physical stability of the therapeutic protein filgrastim (G-CSF). RSC Advances, 2016, 6, 78970-78978.	3.6	14
104	Efficacy of Poly-Lactic-Co-Glycolic Acid Micro- and Nanoparticles of Ciprofloxacin Against Bacterial Biofilms. Journal of Pharmaceutical Sciences, 2016, 105, 3115-3122.	3.3	42
105	Facilitating gastrointestinal solubilisation and enhanced oral absorption of SN38 using a molecularly complexed silica-lipid hybrid delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 105, 32-39.	4.3	18
106	Mind "De GaPPâ€i in vitro efficacy of deferiprone and galliumâ€protoporphyrin against <i>Staphylococcus aureus</i> biofilms. International Forum of Allergy and Rhinology, 2016, 6, 737-743.	2.8	39
107	Silica encapsulated lipid-based drug delivery systems for reducing the fed/fasted variations of ziprasidone in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 101, 33-42.	4.3	30
108	Lipophilic Prodrugs of SN38: Synthesis and in Vitro Characterization toward Oral Chemotherapy. Molecular Pharmaceutics, 2016, 13, 287-294.	4.6	51

#	Article	IF	CITATIONS
109	Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery. Expert Opinion on Drug Delivery, 2016, 13, 691-707.	5.0	80
110	Orientating lipase molecules through surface chemical control for enhanced activity: A QCM-D and ToF-SIMS investigation. Colloids and Surfaces B: Biointerfaces, 2016, 142, 173-181.	5.0	31
111	Oral nanomedicine approaches for the treatment of psychiatric illnesses. Journal of Controlled Release, 2016, 223, 137-156.	9.9	36
112	Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems. AAPS Journal, 2016, 18, 23-40.	4.4	54
113	Nanostructuring Biomaterials with Specific Activities towards Digestive Enzymes for Controlled Gastrointestinal Absorption of Lipophilic Bioactive Molecules. Advances in Colloid and Interface Science, 2016, 237, 52-75.	14.7	34
114	Silica Nanoparticle Stabilization of Liquid Crystalline Lipid Dispersions: Impact on Enzymatic Digestion and Drug Solubilization. Current Drug Delivery, 2015, 12, 47-55.	1.6	14
115	Impact of Solidification on the Performance of Lipid-based Colloidal Carriers: Oil-based versus Self-emulsifying Systems. Current Drug Delivery, 2015, 12, 16-25.	1.6	12
116	Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm. PLoS ONE, 2015, 10, e0131806.	2.5	55
117	Pluronic-Functionalized Silica–Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases. Molecular Pharmaceutics, 2015, 12, 4424-4433.	4.6	30
118	Quatsomes for the treatment of Staphylococcus aureus biofilm. Journal of Materials Chemistry B, 2015, 3, 2770-2777.	5.8	28
119	Bioactive Hybrid Particles from Poly(<scp>d</scp> , <scp>l</scp> -lactide- <i>co</i> -glycolide) Nanoparticle Stabilized Lipid Droplets. ACS Applied Materials & Interfaces, 2015, 7, 17460-17470.	8.0	30
120	An inÂvivo safety and efficacy demonstration of a topical liposomal nitric oxide donor treatment for Staphylococcus aureus biofilm–associated rhinosinusitis. Translational Research, 2015, 166, 683-692.	5.0	29
121	A lipid based multi-compartmental system: Liposomes-in-double emulsion for oral vaccine delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 15-21.	4.3	33
122	QCM-D and ToF-SIMS Investigation to Deconvolute the Relationship between Lipid Adsorption and Orientation on Lipase Activity. Langmuir, 2015, 31, 10198-10207.	3.5	23
123	Recent advances in porous silicon-based therapeutic delivery. Therapeutic Delivery, 2015, 6, 97-100.	2.2	12
124	Targeted drug delivery using genetically engineered diatom biosilica. Nature Communications, 2015, 6, 8791.	12.8	226
125	Physico-chemical Studies on the Interaction of Dendrimers with Lipid Bilayers. 1. Effect of Dendrimer Generation and Liposome Surface Charge. Journal of Oleo Science, 2014, 63, 1185-1193.	1.4	14
126	Synergistic role of self-emulsifying lipids and nanostructured porous silica particles in optimizing the oral delivery of lovastatin. Nanomedicine, 2014, 9, 2745-2759.	3.3	28

#	Article	IF	CITATIONS
127	Celecoxib confinement within mesoporous silicon for enhanced oral bioavailability. Open Material Sciences, 2014, 1, .	0.8	5
128	Lyophilized Silica Lipid Hybrid (SLH) Carriers for Poorly Waterâ€Soluble Drugs: Physicochemical and In Vitro Pharmaceutical Investigations. Journal of Pharmaceutical Sciences, 2014, 103, 2950-2959.	3.3	24
129	Controlling the Enzymatic Digestion of Lipids Using Hybrid Nanostructured Materials. ACS Applied Materials & Interfaces, 2014, 6, 15363-15371.	8.0	17
130	Self-nanoemulsifying drug delivery systems for oral insulin delivery: In vitro and in vivo evaluations of enteric coating and drug loading. International Journal of Pharmaceutics, 2014, 477, 390-398.	5.2	77
131	Generation of Geometrically Ordered Lipid-Based Liquid-Crystalline Nanoparticles Using Biologically Relevant Enzymatic Processing. Langmuir, 2014, 30, 5373-5377.	3.5	36
132	The Role of Porous Nanostructure in Controlling Lipase-Mediated Digestion of Lipid Loaded into Silica Particles. Langmuir, 2014, 30, 2779-2788.	3.5	50
133	Self-assembled structures formed during lipid digestion: characterization and implications for oral lipid-based drug delivery systems. Drug Delivery and Translational Research, 2014, 4, 275-294.	5.8	40
134	First in man bioavailability and tolerability studies of a silica–lipid hybrid (Lipoceramic) formulation: a Phase I study with ibuprofen. Drug Delivery and Translational Research, 2014, 4, 212-221.	5.8	57
135	Perspective and potential of oral lipid-based delivery to optimize pharmacological therapies against cardiovascular diseases. Journal of Controlled Release, 2014, 193, 174-187.	9.9	27
136	Liposome-Encapsulated ISMN: A Novel Nitric Oxide-Based Therapeutic Agent against Staphylococcus aureus Biofilms. PLoS ONE, 2014, 9, e92117.	2.5	39
137	Expanding the Therapeutic Potential of Statins by Means of Nanotechnology Enabled Drug Delivery Systems. Current Topics in Medicinal Chemistry, 2014, 14, 1182-1193.	2.1	37
138	Transforming Lipid-Based Oral Drug Delivery Systems into Solid Dosage Forms: An Overview of Solid Carriers, Physicochemical Properties, and Biopharmaceutical Performance. Pharmaceutical Research, 2013, 30, 2993-3017.	3.5	132
139	Development of a novel cell-based assay system EPISSAY for screening epigenetic drugs and liposome formulated decitabine. BMC Cancer, 2013, 13, 113.	2.6	6
140	Structural Aspects of Digestion of Medium Chain Triglycerides Studied in Real Time Using sSAXS and Cryo-TEM. Pharmaceutical Research, 2013, 30, 3088-3100.	3.5	34
141	Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. Journal of Controlled Release, 2013, 172, 48-61.	9.9	167
142	Tableting Lipid-Based Formulations for Oral Drug Delivery: A Case Study with Silica Nanoparticle–Lipid–Mannitol Hybrid Microparticles. Journal of Pharmaceutical Sciences, 2013, 102, 684-693.	3.3	27
143	Recent advances in porous silicon technology for drug delivery. Therapeutic Delivery, 2013, 4, 811-823.	2.2	29
144	A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 285-292.	4.3	86

#	Article	IF	CITATIONS
145	Silica–lipid hybrid (SLH) formulations enhance the oral bioavailability and efficacy of celecoxib: An in vivo evaluation. Journal of Controlled Release, 2013, 167, 85-91.	9.9	44
146	Low Temperature Thermal Dependent Filgrastim Adsorption Behavior Detected with ToF-SIMS. Langmuir, 2013, 29, 15573-15578.	3.5	10
147	Nanostructured Silica–Lipid Hybrid Microparticles: A Supersaturating Carrier for Water- and Lipid-resistant Compounds. Chemistry Letters, 2012, 41, 1334-1336.	1.3	16
148	Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids. Nanoscale, 2012, 4, 1220-1230.	5.6	40
149	Understanding the Interfacial Properties of Nanostructured Liquid Crystalline Materials for Surface-Specific Delivery Applications. Langmuir, 2012, 28, 13485-13495.	3.5	31
150	Probing Protein Association with Nano- and Micro-Scale Structures with ToF-SIMS. ACS Symposium Series, 2012, , 709-729.	0.5	0
151	Hybrid Nanomaterials that Mimic the Food Effect: Controlling Enzymatic Digestion for Enhanced Oral Drug Absorption. Angewandte Chemie - International Edition, 2012, 51, 5475-5479.	13.8	47
152	Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Advances in Colloid and Interface Science, 2012, 175, 25-38.	14.7	107
153	Solid-state nanoparticle coated emulsions for encapsulation and improving the chemical stability of all-trans-retinol. International Journal of Pharmaceutics, 2012, 423, 384-391.	5.2	27
154	Poly(lactic-co-glycolic acid) as a particulate emulsifier. Journal of Colloid and Interface Science, 2012, 375, 142-147.	9.4	20
155	Plasma functionalized PDMS microfluidic chips: towards point-of-care capture of circulating tumor cells. Journal of Materials Chemistry, 2011, 21, 8841.	6.7	34
156	Adsorption of Nonlamellar Nanostructured Liquid-Crystalline Particles to Biorelevant Surfaces for Improved Delivery of Bioactive Compounds. ACS Applied Materials & Interfaces, 2011, 3, 1771-1780.	8.0	39
157	Silica Materials in Drug Delivery Applications. Current Drug Discovery Technologies, 2011, 8, 250-268.	1.2	78
158	Surface analysis for compositional, chemical and structural imaging in pharmaceutics with mass spectrometry: A ToF-SIMS perspective. International Journal of Pharmaceutics, 2011, 417, 61-69.	5.2	49
159	Surface chemical modification to control molecular interactions with porous silicon. Journal of Colloid and Interface Science, 2011, 363, 327-333.	9.4	28
160	Silica-Lipid Hybrid (SLH) Versus Non-lipid Formulations for Optimising the Dose-Dependent Oral Absorption of Celecoxib. Pharmaceutical Research, 2011, 28, 2273-2287.	3.5	44
161	Silica-lipid hybrid microcapsules: Influence of lipid and emulsifier type on in vitro performance. International Journal of Pharmaceutics, 2011, 409, 297-306.	5.2	30
162	Interactions of hydrophilic silica nanoparticles and classical surfactants at non-polar oil–water interface. Journal of Colloid and Interface Science, 2011, 358, 217-225.	9.4	50

#	Article	IF	CITATIONS
163	Time-of-flight secondary-ion mass spectrometry for the surface characterization of solid-state pharmaceuticals. Journal of Pharmacy and Pharmacology, 2010, 59, 251-259.	2.4	19
164	Use of TOF-SIMS to study adsorption and loading behavior of methylene blue and papain in a nano-porous silicon layer. Journal of the American Society for Mass Spectrometry, 2010, 21, 254-260.	2.8	28
165	An oral delivery system for indomethicin engineered from cationic lipid emulsions and silica nanoparticles. Journal of Controlled Release, 2010, 143, 367-373.	9.9	65
166	Mechanistic insight into the dermal delivery from nanoparticle-coated submicron O/W emulsions. Journal of Pharmaceutical Sciences, 2010, 99, 890-904.	3.3	28
167	Thermodynamic and structural studies of mixed monolayers: Mutual mixing of DPPC and DPPG with DoTAP at the air–water interface. Materials Science and Engineering C, 2010, 30, 542-548.	7.3	16
168	Silica nanoparticle coated liposomes: A new type of hybrid nanocapsule for proteins. International Journal of Pharmaceutics, 2010, 392, 285-293.	5.2	129
169	Oxidized Mesoporous Silicon Microparticles for Improved Oral Delivery of Poorly Soluble Drugs. Molecular Pharmaceutics, 2010, 7, 227-236.	4.6	128
170	Mechanistic Insight into Cell Growth, Internalization, and Cytotoxicity of PAMAM Dendrimers. Biomacromolecules, 2010, 11, 382-389.	5.4	44
171	Thermal Oxidation for Controlling Protein Interactions with Porous Silicon. Langmuir, 2010, 26, 14316-14322.	3.5	46
172	Detecting the Presence of Denatured Human Serum Albumin in an Adsorbed Protein Monolayer Using TOFâ^'SIMS. Langmuir, 2010, 26, 12075-12080.	3.5	35
173	Silica Nanoparticles To Control the Lipase-Mediated Digestion of Lipid-Based Oral Delivery Systems. Molecular Pharmaceutics, 2010, 7, 522-532.	4.6	76
174	Hybrid lipid–silica microcapsules engineered by phase coacervation of Pickering emulsions to enhance lipid hydrolysis. Physical Chemistry Chemical Physics, 2010, 12, 7162.	2.8	23
175	Nanoparticle Coated Emulsions as Novel Dermal Delivery Vehicles. Current Drug Delivery, 2009, 6, 367-373.	1.6	18
176	Silica-lipid hybrid (SLH) microcapsules: A novel oral delivery system for poorly soluble drugs. Journal of Controlled Release, 2009, 134, 62-70.	9.9	154
177	Nanoparticle Coated Submicron Emulsions: Sustained In-vitro Release and Improved Dermal Delivery of All-trans-retinol. Pharmaceutical Research, 2009, 26, 1764-1775.	3.5	71
178	Chemical stability and phase distribution of all-trans-retinol in nanoparticle-coated emulsions. International Journal of Pharmaceutics, 2009, 376, 186-194.	5.2	78
179	Dry Hybrid Lipidâ~'Silica Microcapsules Engineered from Submicron Lipid Droplets and Nanoparticles as a Novel Delivery System for Poorly Soluble Drugs. Molecular Pharmaceutics, 2009, 6, 861-872.	4.6	90
180	The encapsulation and release of guanosine from PEGylated liposomes. Journal of Liposome Research, 2009, 19, 29-36.	3.3	37

#	Article	IF	CITATIONS
181	Droplet structure instability in concentrated emulsions. Journal of Colloid and Interface Science, 2008, 320, 569-574.	9.4	21
182	Rheological transition of concentrated emulsions during successive shearing cycles. Journal of Colloid and Interface Science, 2008, 327, 440-445.	9.4	7
183	Aqueous and Thermal Oxidation of Porous Silicon Microparticles: Implications on Molecular Interactions. Langmuir, 2008, 24, 14222-14226.	3.5	38
184	PEGylation of Porous Silicon Using Click Chemistry. Langmuir, 2008, 24, 7625-7627.	3.5	51
185	Impact of Thermal Oxidation on the Adsorptive Properties and Structure of Porous Silicon Particles. Journal of Physical Chemistry C, 2008, 112, 9717-9722.	3.1	40
186	PAMAM Dendrimer Interactions with Supported Lipid Bilayers: A Kinetic and Mechanistic Investigation. Langmuir, 2008, 24, 13532-13539.	3.5	54
187	Colloidosomes from the Controlled Interaction of Submicrometer Triglyceride Droplets and Hydrophilic Silica Nanoparticles. Langmuir, 2008, 24, 7132-7137.	3.5	29
188	Naphthalene Sulfonate Functionalized Dendrimers at the Solidâ^'Liquid Interface: Influence of Core Type, Ionic Strength, and Competitive Ionic Adsorbates. Langmuir, 2008, 24, 12398-12404.	3.5	6
189	Dendrimer adsorption on charged particulate surfaces. Asia-Pacific Journal of Chemical Engineering, 2008, 3, 13-17.	1.5	5
190	Nanoparticle layers controlling drug release from emulsions. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 39-47.	4.3	103
191	Synergistic effect of silica nanoparticles and charged surfactants in the formation and stability of submicron oil-in-water emulsions. Physical Chemistry Chemical Physics, 2007, 9, 6426.	2.8	99
192	Mesoporous silicon: a platform for the delivery of therapeutics. Expert Opinion on Drug Delivery, 2007, 4, 101-110.	5.0	115
193	Deformation and nano-rheology of red blood cells: An AFM investigation. Colloids and Surfaces B: Biointerfaces, 2006, 50, 43-48.	5.0	63
194	Nanoparticle encapsulation of emulsion droplets. International Journal of Pharmaceutics, 2006, 324, 92-100.	5.2	59
195	Physical and thermal characterisation of chiral omeprazole sodium salts. Journal of Pharmaceutical and Biomedical Analysis, 2006, 42, 25-31.	2.8	17
196	Water Adsorption Kinetics and Contact Angles of Pharmaceutical Powders. Journal of Pharmaceutical Sciences, 2005, 94, 861-872.	3.3	21
197	Colloid Probe AFM Investigation of the Influence of Cross-Linking on the Interaction Behavior and Nano-Rheology of Colloidal Droplets. Langmuir, 2005, 21, 12342-12347.	3.5	18
198	Nanoparticles at the Polydimethylsiloxane Droplet/Water Interface. Australian Journal of Chemistry, 2005, 58, 664.	0.9	3

#	Article	IF	CITATIONS
199	Polymer and particle adsorption at the PDMS droplet-water interface. Advances in Colloid and Interface Science, 2004, 108-109, 105-118.	14.7	43
200	Attenuated total reflectance infrared studies of liposome adsorption at the solid–liquid interface. Colloids and Surfaces B: Biointerfaces, 2004, 36, 147-153.	5.0	12
201	Hydrophobic Interactions in Concentrated Colloidal Suspensions:  A Rheological Investigation. Journal of Physical Chemistry B, 2004, 108, 12116-12122.	2.6	20
202	Nanoparticles of Varying Hydrophobicity at the Emulsion Dropletâ^'Water Interface:Â Adsorption and Coalescence Stability. Langmuir, 2004, 20, 8357-8365.	3.5	70
203	Adsorption of Hydrophobic Silica Nanoparticles at the PDMS Dropletâ^'Water Interface. Langmuir, 2003, 19, 8364-8370.	3.5	45
204	Hydrophilic Silica Nanoparticles at the PDMS Dropletâ^Water Interface. Langmuir, 2003, 19, 3785-3792.	3.5	70
205	An AFM Study of the Deformation and Nanorheology of Cross-Linked PDMS Droplets. Langmuir, 2002, 18, 1674-1679.	3.5	61
206	Temperature-induced gelation of emulsions stabilised by responsive copolymers: A rheological study. Physical Chemistry Chemical Physics, 2002, 4, 96-102.	2.8	30
207	Face specific surface properties of pharmaceutical crystals. Journal of Pharmaceutical Sciences, 2002, 91, 1432-1444.	3.3	49
208	Application of time-dependent sessile drop contact angles on compacts to characterise the surface energetics of sulfathiazole crystals. International Journal of Pharmaceutics, 2002, 234, 43-54.	5.2	44
209	Determination of the Separation in Colloid Probe Atomic Force Microscopy of Deformable Bodies. Langmuir, 2001, 17, 7955-7956.	3.5	41
210	The Influence of Alkali Metal Ions on Homogeneous Nucleation of Al(OH)3 Crystals from Supersaturated Caustic Aluminate Solutions. Journal of Colloid and Interface Science, 2000, 224, 317-324.	9.4	31
211	Adsorption of Ethyl(hydroxyethyl)cellulose onto Silica Particles: The Role of Surface Chemistry and Temperature. Journal of Colloid and Interface Science, 2000, 228, 297-305.	9.4	52
212	Secondary nucleation of gibbsite crystals from synthetic Bayer liquors: effect of alkali metal ions. Journal of Crystal Growth, 2000, 219, 451-464.	1.5	25
213	Cation effects during aggregation and agglomeration of gibbsite particles under synthetic Bayer crystallisation conditions. Journal of Crystal Growth, 2000, 209, 924-933.	1.5	17
214	Wettability studies of morphine sulfate powders. International Journal of Pharmaceutics, 2000, 198, 201-212.	5.2	47
215	PEOâ^'PPOâ^'PEO Block Copolymers at the Emulsion Dropletâ^'Water Interface. Langmuir, 2000, 16, 4116-4121.	3.5	79
216	Viscosity, Density, and Refractive Index of Aqueous Sodium and Potassium Aluminate Solutions. Journal of Chemical & Engineering Data, 2000, 45, 665-671.	1.9	23

#	Article	IF	CITATIONS
217	The Unusual Colloid Stability of Gibbsite at High pH. Journal of Colloid and Interface Science, 1998, 203, 115-121.	9.4	39
218	Copper(II) activation and cyanide deactivation of zinc sulphide under mildly alkaline conditions. Applied Surface Science, 1997, 108, 333-344.	6.1	73
219	Rheological investigations of ultrafine galena particle slurries under flotation-related conditions. International Journal of Mineral Processing, 1997, 51, 241-254.	2.6	22
220	Irradiation Effects During XPS Studies of Cu(II) Activation of Zinc Sulphide. Surface and Interface Analysis, 1996, 24, 620-626.	1.8	88
221	Contact Angle Studies of Ethyl Xanthate Coated Galena Particles. Journal of Colloid and Interface Science, 1996, 184, 512-518.	9.4	16
222	Contact Angle Studies of Galena Particles. Journal of Colloid and Interface Science, 1995, 172, 302-310.	9.4	58
223	The interaction of ethyl xanthate with copper(II)-activated zinc sulphide: Kinetic effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 85, 51-68.	4.7	35
224	The competitive adsorption of cyanide and ethyl xanthate on pyrite and pyrrhotite surfaces. International Journal of Mineral Processing, 1993, 38, 205-233.	2.6	46
225	The role of cyanide in the interaction of ethyl xanthate with galena. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 81, 103-119.	4.7	37
226	Fourier Transform Infrared Spectroscopy and Monte Carlo studies on the dynamics of physisorbing and chemisorbing polymers. Langmuir, 1992, 8, 2206-2209.	3.5	15
227	Chemisorption of linear and cyclic polymethylsiloxanes on alumina studied by Fourier-transform infrared spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 1377.	1.7	32