
Wolfgang Ketter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1920367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Demand side management—A simulation of household behavior under variable prices. Energy Policy, 2011, 39, 8163-8174.	4.2	385
2	Research Commentary —Designing Smart Markets. Information Systems Research, 2010, 21, 688-699.	2.2	115
3	Power TAC: A competitive economic simulation of the smart grid. Energy Economics, 2013, 39, 262-270.	5.6	115
4	Preferences for car sharing services: Effects of instrumental attributes and psychological ownership. Journal of Environmental Psychology, 2017, 53, 121-130.	2.3	99
5	A survey-based assessment of how existing and potential electric vehicle owners perceive range anxiety. Journal of Cleaner Production, 2020, 276, 122779.	4.6	91
6	One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids. Applied Energy, 2018, 210, 800-814.	5.1	79
7	A Multiagent Competitive Gaming Platform to Address Societal Challenges. MIS Quarterly: Management Information Systems, 2016, 40, 447-460.	3.1	74
8	A reinforcement learning approach to autonomous decision-making in smart electricity markets. Machine Learning, 2013, 92, 5-39.	3.4	72
9	Electric Vehicle Virtual Power Plant Dilemma: Grid Balancing Versus Customer Mobility. Production and Operations Management, 2018, 27, 2054-2070.	2.1	69
10	Competitive Benchmarking: An IS Research Approach to Address Wicked Problems with Big Data and Analytics. MIS Quarterly: Management Information Systems, 2016, 40, 1057-1080.	3.1	68
11	Cognitive Challenges in Human–Artificial Intelligence Collaboration: Investigating the Path Toward Productive Delegation. Information Systems Research, 2022, 33, 678-696.	2.2	66
12	Electric Vehicle Range Anxiety: An Obstacle for the Personal Transportation (R)evolution?. , 2019, , .		59
13	Will Humans-in-the-Loop Become Borgs? Merits and Pitfalls of Working with Al. MIS Quarterly: Management Information Systems, 2021, 45, 1527-1556.	3.1	57
14	A Multi-Agent Negotiation Testbed for Contracting Tasks with Temporal and Precedence Constraints. International Journal of Electronic Commerce, 2002, 7, 35-57.	1.4	53
15	Evaluating and Optimizing Opportunity Fast-Charging Schedules in Transit Battery Electric Bus Networks. Transportation Science, 2020, 54, 1601-1615.	2.6	53
16	Consumption and Performance: Understanding Longitudinal Dynamics of Recommender Systems via an Agent-Based Simulation Framework. Information Systems Research, 2020, 31, 76-101.	2.2	53
17	Renewable energy cooperatives: Facilitating the energy transition at the Port of Rotterdam. Energy Policy, 2018, 121, 61-69.	4.2	49
18	Real-Time Tactical and Strategic Sales Management for Intelligent Agents Guided by Economic Regimes. Information Systems Research, 2012, 23, 1263-1283.	2.2	45

#	Article	IF	CITATIONS
19	Sustainable Electric Vehicle Charging using Adaptive Pricing. Production and Operations Management, 2020, 29, 1550-1572.	2.1	45
20	Detecting and forecasting economic regimes in multi-agent automated exchanges. Decision Support Systems, 2009, 47, 307-318.	3.5	43
21	Estimating the benefits of cooperation in a residential microgrid: A data-driven approach. Applied Energy, 2016, 180, 130-141.	5.1	41
22	Agent-assisted supply chain management: Analysis and lessons learned. Decision Support Systems, 2014, 57, 274-284.	3.5	37
23	The economic consequences of electricity tariff design in a renewable energy era. Applied Energy, 2020, 275, 115317.	5.1	35
24	Machine Learning for Identifying Demand Patterns of Home Energy Management Systems with Dynamic Electricity Pricing. Applied Sciences (Switzerland), 2017, 7, 1160.	1.3	33
25	Pushing the Limits of Rational Agents: The Trading Agent Competition for Supply Chain Management. Al Magazine, 2010, 31, 63.	1.4	32
26	Exploring Bidder Heterogeneity in Multichannel Sequential B2B Auctions. MIS Quarterly: Management Information Systems, 2016, 40, 645-662.	3.1	32
27	Flexible decision control in an autonomous trading agent. Electronic Commerce Research and Applications, 2009, 8, 91-105.	2.5	31
28	Flexible decision support in dynamic inter-organisational networks. European Journal of Information Systems, 2010, 19, 436-448.	5.5	31
29	Evaluating Policies for Parking Lots Handling Electric Vehicles. IEEE Access, 2018, 6, 944-961.	2.6	30
30	Information Systems for a Smart Electricity Grid. ACM Transactions on Management Information Systems, 2018, 9, 1-22.	2.1	30
31	Effective demand response for smart grids: Evidence from a real-worldÂpilot. Decision Support Systems, 2016, 91, 48-66.	3.5	25
32	Information Transparency in Business-to-Business Auction Markets: The Role of Winner Identity Disclosure. Management Science, 2019, 65, 4261-4279.	2.4	24
33	Cross-subsidies among residential electricity prosumers from tariff design and metering infrastructure. Energy Policy, 2020, 145, 111736.	4.2	23
34	Ridesharing platform entry effects on ownership-based consumption in Indonesia. Journal of Cleaner Production, 2020, 265, 121535.	4.6	21
35	Making green power purchase agreements more predictable and reliable for companies. Decision Support Systems, 2021, 144, 113514.	3.5	20
36	A review of equity in electricity tariffs in the renewable energy era. Renewable and Sustainable Energy Reviews, 2022, 161, 112333.	8.2	19

#	Article	IF	CITATIONS
37	A data-driven approach to managing electric vehicle charging infrastructure in parking lots. Transportation Research, Part D: Transport and Environment, 2022, 105, 103198.	3.2	18
38	Adaptive Tactical Pricing in Multiâ€Agent Supply Chain Markets Using Economic Regimes. Decision Sciences, 2015, 46, 791-818.	3.2	14
39	Dynamic Decision Making in Sequential Business-to-Business Auctions: A Structural Econometric Approach. Management Science, 2019, 65, 3853-3876.	2.4	14
40	Transitioning from the traditional to the smart grid: Lessons learned from closed-loop supply chains. , 2012, , .		13
41	A predictive empirical model for pricing and resource allocation decisions. , 2007, , .		12
42	Smart Cities and Digitized Urban Management. Business and Information Systems Engineering, 2018, 60, 193-195.	4.0	12
43	Special Issue Editorial: Addressing Societal Challenges through Analytics: An ESG ICE Framework and Research Agenda. Journal of the Association for Information Systems, 2020, 21, 1115-1127.	2.4	11
44	Data-Driven Competitor-Aware Positioning in On-Demand Vehicle Rental Networks. Transportation Science, 2022, 56, 182-200.	2.6	11
45	Introducing an Agile Method for Enterprise Mash-Up Component Development. , 2009, , .		10
46	Managing electricity price modeling risk via ensemble forecasting: The case of Turkey. Energy Policy, 2018, 123, 390-403.	4.2	10
47	Renewable Energy Technologies and Electricity Forward Market Risks. Energy Journal, 2021, 42, .	0.9	10
48	The 2014 Power Trading Agent Competition. SSRN Electronic Journal, 0, , .	0.4	8
49	Agent-based competitive simulation. , 2010, , .		7
50	Smart Grid Challenges for Electricity Retailers. KI - Kunstliche Intelligenz, 2014, 28, 191-198.	2.2	7
51	The 2015 Power Trading Agent Competition. SSRN Electronic Journal, 0, , .	0.4	7
52	Competitive Benchmarking: An IS Research Approach to Address Wicked Problems with Big Data and Analytics. SSRN Electronic Journal, 0, , .	0.4	7
53	Modeling and Managing Joint Price and Volumetric Risk for Volatile Electricity Portfolios. Energies, 2020, 13, 3578.	1.6	7
54	Identifying and Forecasting Economic Regimes in TAC SCM. Lecture Notes in Computer Science, 2006, , 113-125.	1.0	7

#	Article	IF	CITATIONS
55	Agent-level determinants of price expectation formation in online double-sided auctions. Decision Support Systems, 2019, 124, 113068.	3.5	6
56	A semantic web architecture for advocate agents to determine preferences and facilitate decision making. , 2008, , .		5
57	The impact of framing on consumer selection of energy tariffs. , 2012, , .		5
58	A profitable business model for electric vehicle fleet owners. , 2012, , .		5
59	The 2018 Power Trading Agent Competition. SSRN Electronic Journal, 0, , .	0.4	5
60	Autonomous Data-Driven Decision-Making in Smart Electricity Markets. Lecture Notes in Computer Science, 2012, , 132-147.	1.0	5
61	Collaboration and Delegation between Humans and Al: An Experimental Investigation of the Future of Work. SSRN Electronic Journal, 0, , .	0.4	5
62	Economic inefficiencies of pricing distributed generation under novel tariff designs. Applied Energy, 2022, 313, 118839.	5.1	5
63	Dynamic retail market tariff design for an electricity aggregator using reinforcement learning. Electric Power Systems Research, 2022, 212, 108560.	2.1	5
64	Product pricing using adaptive real-time probability of acceptance estimations based on economic regimes. , 2009, , .		4
65	Business intelligence gap analysis. , 2010, , .		4
66	Competitive Benchmarking: Lessons Learned from the Trading Agent Competition. Al Magazine, 2012, 33, 103.	1.4	4
67	A scalable preference model for autonomous decision-making. Machine Learning, 2018, 107, 1039-1068.	3.4	4
68	Coordinating Decisions in a Supply-Chain Trading Agent. Lecture Notes in Business Information Processing, 2010, , 161-174.	0.8	4
69	The 2016 Power Trading Agent Competition. SSRN Electronic Journal, 0, , .	0.4	4
70	An Evolutionary Approach for Studying Heterogeneous Strategies in Electronic Markets. Lecture Notes in Computer Science, 2004, , 157-168.	1.0	4
71	Flexible Decision Support in a DynamicBusiness Network. , 2009, , 233-248.		4
72	Heterogeneous Electric Vehicle Charging Coordination: A Variable Charging Speed Approach. , 2019, , .		3

#	Article	IF	CITATIONS
73	Decision strategies in sequential power markets with renewable energy. Energy Policy, 2022, 167, 113025.	4.2	3
74	Analyzing and improving the energy balancing market in the power trading agent competition. , 2016, , .		2
75	Analysis of the Effects of Storage Capabilities Integration on Balancing Mechanisms in Agent-Based Smart Grids. Lecture Notes in Computer Science, 2016, , 215-230.	1.0	2
76	Call for Papers: Issue 3/2018. Business and Information Systems Engineering, 2016, 58, 437-438.	4.0	2
77	Information Transparency in B2B Auction Markets: The Role of Winner Identity Disclosure. SSRN Electronic Journal, 2017, , .	0.4	2
78	A Boost for Urban Sustainability: Optimizing Electric Transit Bus Networks in Rotterdam. INFORMS Journal on Applied Analytics, 2021, 51, 391-407.	0.7	2
79	Electricity Trading Agent for EV-enabled Parking Lots. Lecture Notes in Business Information Processing, 2017, , 35-49.	0.8	2
80	An Evolutionary Framework for Large-Scale Experimentation in Multi-Agent Systems. , 2004, , 155-173.		1
81	Towards a dynamic model of supply chain regimes for complex multi-agent markets. , 2010, , .		1
82	A Kalman filter approach to analyze multivariate hedonics pricing model in dynamic supply chain markets. , 2010, , .		1
83	Should I Stay or Should I Go. Business and Information Systems Engineering, 2014, 6, 115-126.	4.0	1
84	A Data-Driven Approach to Manage Charging Infrastructure for Electric Vehicles in Parking Lots. SSRN Electronic Journal, 2017, , .	0.4	1
85	Fleetpower: Creating Virtual Power Plants in Sustainable Smart Electricity Markets. SSRN Electronic Journal, 0, , .	0.4	1
86	Sustainable Smart Electricity Markets. , 2021, , .		1
87	Why is my bus suddenly so crowded? Spillover effects of the discontinuation of three-in-one policy in Jakarta. Case Studies on Transport Policy, 2021, 9, 995-1005.	1.1	1
88	Dynamic Agent-based Scheduling of Treatments: Evidence from the Dutch Youth Health Care Sector. Lecture Notes in Computer Science, 2015, , 173-199.	1.0	1
89	Market-Based Multi-Agent Coordination to Manage Energy Balance in Smart Grids. SSRN Electronic Journal, 0, , .	0.4	1
90	Designing Hybrid Mechanisms to Overcome Congestion in Sequential Dutch Auctions. MIS Quarterly: Management Information Systems, 2022, 46, 457-490.	3.1	1

#	Article	IF	CITATIONS
91	AAAI 2008 Workshop Reports. Al Magazine, 2009, 30, 108.	1.4	0
92	Ontology-Driven Decision Support in Dynamic Supply-Chains. , 2009, , .		0
93	Identifying and predicting economic regimes in supply chains using sales and procurement information. , 2009, , .		Ο
94	Multi-Agent Systems for Energy Management. Integrated Computer-Aided Engineering, 2010, 17, 271-272.	2.5	0
95	Forecasting prices in dynamic heterogeneous product markets using multivariate prediction methods. , 2012, , .		0
96	SmartRate. , 2012, , .		0
97	Electric Vehicles: An Agent-Based Approach to Sustainability. Lecture Notes in Computer Science, 2015, , 271-274.	1.0	Ο
98	Challenges for Software Agents Supporting Decision-Makers in Trading Flowers Worldwide. Lecture Notes in Business Information Processing, 2012, , 32-39.	0.8	0
99	A Decision Framework for Broker Selection in Smart Grids. Lecture Notes in Business Information Processing, 2013, , 61-74.	0.8	Ο
100	Electric Vehicle Storage Management in Operating Reserve Auctions. , 2017, , .		0
101	The 2017 Power Trading Agent Competition. SSRN Electronic Journal, 0, , .	0.4	0
102	Time-dependent electricity pricing using variable announcement horizons. Energy Informatics, 2020, 3,	1.4	0