Siew-Chong Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1920236/publications.pdf

Version: 2024-02-01

246 papers 8,520 citations

43973 48 h-index 84 g-index

248 all docs

248 docs citations

times ranked

248

4759 citing authors

#	Article	IF	CITATIONS
1	A Self-Adaptive-Step-Size Incremental-Resistance-MPPT Technique for Reverse-Electrodialysis System. IEEE Transactions on Industrial Electronics, 2023, 70, 3814-3824.	5.2	1
2	Dual-Ascent Hierarchical Control-Based Distribution Power Loss Reduction of Parallel-Connected Distributed Energy Storage Systems in DC Microgrids. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2023, 4, 137-146.	3.0	6
3	Single-Inductor Multiple-Output (SIMO) Buck Hybrid Converter for Simultaneous Wireless and Wired Power Transfer. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 2163-2177.	3.7	7
4	Precise Luminous Flux and Color Control of Dimmable Red-Green-Blue Light-Emitting Diode Systems. IEEE Transactions on Power Electronics, 2022, 37, 588-606.	5.4	6
5	Interleaved Buck-Type Rectifier With Pseudo-DC-Link Capacitors for Automatic Current Balancing. IEEE Transactions on Industrial Electronics, 2022, 69, 12676-12687.	5.2	1
6	A High-Order Differentiator Based Distributed Secondary Control for DC Microgrids Against False Data Injection Attacks. IEEE Transactions on Smart Grid, 2022, 13, 4035-4045.	6.2	14
7	Ion-plus salinity gradient flow Battery. Chemical Engineering Science, 2022, 253, 117580.	1.9	5
8	Optimization of Self-Adaptive INR-MPPT for R-Mode RED Stacks. , 2022, , .		1
9	Precise Luminous Flux and Color Temperature Control of Dimmable Bi-Color White Light-Emitting Diode Systems. , 2022, , .		O
10	Non-isolated Buck-Boost Hybrid Converter with AC-AC/DC Power Conversion for Simultaneous Wired and Wireless Power Transfer. , 2022, , .		1
11	Fixed-Frequency Phase-Shift Modulated Capacitor-Clamped <i>LLC</i> Resonant Converter for EV Charging. IEEE Transactions on Power Electronics, 2022, 37, 13730-13742.	5.4	8
12	Power Loss Minimization of Parallel-Connected Distributed Energy Resources in DC Microgrids Using a Distributed Gradient Algorithm-Based Hierarchical Control. IEEE Transactions on Smart Grid, 2022, 13, 4538-4550.	6.2	14
13	Electric Spring and Smart Load: Technology, System-Level Impact, and Opportunities. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 6524-6544.	3.7	26
14	Highly Efficient Wireless Power Transfer System With Single-Switch Step-Up Resonant Inverter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 1157-1168.	3.7	8
15	Highly Efficient Single-Switch-Regulated Resonant Wireless Power Receiver With Hybrid Modulation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 3770-3780.	3.7	3
16	Low-Cost Single-Switch Bidirectional Wireless Power Transceiver for Peer-to-Peer Charging. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 3781-3790.	3.7	8
17	Overshoot Damping and Dynamics Improvement in Wireless Power Transfer Systems via Receiver-Side Controller Design. IEEE Transactions on Power Electronics, 2021, , 1-1.	5.4	15
18	Distributed Sliding Mode Observer-Based Secondary Control for DC Microgrids Under Cyber-Attacks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 144-154.	2.7	32

#	Article	IF	CITATIONS
19	Line Resistance Identification-Based Adaptive Droop Control for Distribution Power Loss Minimization of DC Microgrids. , 2021, , .		2
20	Design of A Wireless Power Modulator for Wireless Power Transfer Systems., 2021,,.		2
21	ON Effect of Right-Half-Plane Zero Present in Buck Converters With Input Current Source in Wireless Power Receiver Systems. IEEE Transactions on Power Electronics, 2021, 36, 6364-6374.	5 . 4	10
22	Distribution Power Loss Mitigation of Parallel-Connected Distributed Energy Resources in Low-Voltage DC Microgrids Using a Lagrange Multiplier-Based Adaptive Droop Control. IEEE Transactions on Power Electronics, 2021, 36, 9105-9118.	5.4	37
23	Reconfigurable Bidirectional Fully Modular DC–DC Converters Using Switched-Capacitor Modules. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2021, 2, 491-500.	3.0	4
24	Dynamic Response and Stability Margin Improvement of Wireless Power Receiver Systems via Right-Half-Plane Zero Elimination. IEEE Transactions on Power Electronics, 2021, 36, 11196-11207.	5.4	6
25	Simplified Algebraic Estimation Technique for Sensor Count Reduction in Single-Phase Converters With an Active Power Buffer. IEEE Transactions on Power Electronics, 2021, 36, 11444-11455.	5.4	9
26	Capacitor-Clamped <i>LLC</i> Resonant Converter Operating in Capacitive Region for High-Power-Density EV Charger. IEEE Transactions on Power Electronics, 2021, 36, 11456-11468.	5.4	8
27	Sensor Count Reduction for Single-Phase Converters With an Active Power Buffer Using Algebraic Observers. IEEE Transactions on Industrial Electronics, 2021, 68, 10666-10676.	5 . 2	5
28	Efficient Hybrid-Modulated Single-Stage Wireless Power Receiver With Continuous DC Current. IEEE Transactions on Power Electronics, 2021, 36, 13504-13514.	5.4	5
29	A Generalized Reverse-Electrodialysis Model Incorporating Both Continuous and Recycle Modes for Energy Harvesting From Salinity Gradient Power. IEEE Access, 2021, 9, 71626-71637.	2.6	3
30	Lagrange Multiplier-Based Optimization Control for Distribution Power Loss Minimization of Islanded Three-Phase AC Microgrids. , 2021, , .		1
31	Power Loss Mitigation of Parallel-Connected Distributed Energy Resources in DC Microgrids Using a Dual-Ascent Hierarchical Control. , 2021, , .		7
32	Distributed Linear State Observer (DLSO)-Based Distributed Secondary Control for DC Microgrids Under False Signal Attacks. , 2021, , .		2
33	State-of-Charge Balance Control of Distributed Battery Systems with Distinct State-of-Health in DC Microgrids., 2021,,.		8
34	New Dynamic Photo-Electro-Thermal Modeling of Light-Emitting Diodes With Phosphor Coating as Light Converterâ€"Part II: Model Parameter Determination and Practical Verification. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 780-793.	3.7	9
35	New Dynamic Photo-Electro-Thermal Modeling of Light-Emitting Diodes With Phosphor Coating as Light Converter Part I: Theory, Analysis, and Modeling. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 771-779.	3.7	13
36	A High-Efficiency DC/DC Converter for High-Voltage-Gain, High-Current Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 2812-2823.	3.7	22

#	Article	IF	Citations
37	Design Considerations for Voltage Sensorless Control of a PFC Single-Phase Rectifier Without Electrolytic Capacitors. IEEE Transactions on Industrial Electronics, 2020, 67, 1878-1889.	5.2	26
38	Internal Dynamics Stabilization of Single-Phase Power Converters With Lyapunov-Based Automatic-Power-Decoupling Control. IEEE Transactions on Power Electronics, 2020, 35, 2160-2169.	5.4	23
39	InGaN RGB Light-Emitting Diodes With Monolithically Integrated Photodetectors for Stabilizing Color Chromaticity. IEEE Transactions on Industrial Electronics, 2020, 67, 5154-5160.	5.2	29
40	Decentralized Control of DC Electric Springs for Storage Reduction in DC Microgrids. IEEE Transactions on Power Electronics, 2020, 35, 4634-4646.	5.4	21
41	A New Geometric Vector Optimization of Predictive Direct Power Control. IEEE Transactions on Power Electronics, 2020, 35, 5427-5436.	5.4	12
42	High-Frequency Differential Resonant Rectifier with DC Output Voltage Regulation. , 2020, , .		0
43	On Beat Frequency Oscillation of Two-Stage Wireless Power Receivers. IEEE Transactions on Power Electronics, 2020, 35, 12741-12751.	5.4	11
44	Operating Cost Reduction of DC Microgrids Under Real-Time Pricing Using Adaptive Differential Evolution Algorithm. IEEE Access, 2020, 8, 169247-169258.	2.6	31
45	A Direct AC-AC Single-Inductor Multiple-Output (SIMO) Converter for Multi-Coil Wireless Power Transfer Applications. , 2020, , .		2
46	Fast Hardware Approach to Determining Mutual Coupling of Series–Series-Compensated Wireless Power Transfer Systems With Active Rectifiers. IEEE Transactions on Power Electronics, 2020, 35, 11026-11038.	5.4	41
47	Reducing Distribution Power Loss of Islanded AC Microgrids Using Distributed Electric Springs With Predictive Control. IEEE Transactions on Industrial Electronics, 2020, 67, 9001-9011.	5.2	30
48	Single-Inductor Multiple-Output Inverter With Precise and Independent Output Voltage Regulation. IEEE Transactions on Power Electronics, 2020, 35, 11222-11234.	5.4	3
49	Means of Reducing Number of Sensors in Single-Phase Power Converters with an Active Power Buffer. , 2020, , .		5
50	Resonant-Inductive-Boosting DC-DC Converter with Very High Voltage Gain. , 2020, , .		4
51	Capacitor-Clamped LLC Resonant Converter for Constant Power EV Charging with Fixed Operation Frequency. , 2020, , .		3
52	Single-Stage Regulated Resonant WPT Receiver With Low Input Harmonic Distortion. IEEE Transactions on Power Electronics, 2020, 35, 6820-6829.	5.4	12
53	Distributed Higher Order Differentiator-Based Distributed Secondary Control for DC Microgrids Under Cyber-Attacks. , 2020, , .		1
54	Economic Dispatch of DC Microgrids Under Real-Time Pricing Using Adaptive Differential Evolution Algorithm. , 2020, , .		4

#	Article	IF	Citations
55	Electrical and Thermal Effects of Light-Emitting Diodes on Signal-to-Noise Ratio in Visible Light Communication. IEEE Transactions on Industrial Electronics, 2019, 66, 2785-2794.	5.2	10
56	Hybrid Electric Springs for Grid-Tied Power Control and Storage Reduction in AC Microgrids. IEEE Transactions on Power Electronics, 2019, 34, 3214-3225.	5.4	34
57	Buck-Boost Single-Inductor Multiple-Output High-Frequency Inverters for Medium-Power Wireless Power Transfer. IEEE Transactions on Power Electronics, 2019, 34, 3457-3473.	5.4	16
58	Sliding-Mode-Based Direct Power Control of Dual-Active-Bridge DC-DC Converters. , 2019, , .		28
59	Mitigating Distribution Power Losses of Standalone AC Microgrids Using Particle-Swarm-Optimization Control for Distributed Battery Systems. , 2019, , .		2
60	Single-Inductor Multiple-Output Buck Hybrid Converter with Simultaneous AC and DC Outputs for Multi-Coil Wireless Power Transfer Applications. , 2019, , .		6
61	Power Loss Analysis of a Back-to-Back Switching Single-Inductor Multiple-Output Inverter. , 2019, , .		3
62	DC-Shifted Harmonics-Boosted Resonant DC-DC Converter with High-Step-Up Conversion Ratio with ZVS Over the Full Load Range. , 2019, , .		3
63	Trends and Development of Sliding Mode Control Applications for Renewable Energy Systems. Energies, 2019, 12, 2861.	1.6	12
64	Single-Switch-Regulated Resonant WPT Receiver. IEEE Transactions on Power Electronics, 2019, 34, 10386-10391.	5.4	20
65	A comparative study on slim 3-D receiver coil structures for omnidirectional wireless power transfer applications. Wireless Power Transfer, 2019, 6, 85-96.	0.9	0
66	Front-End Parameter Monitoring Method Based on Two-Layer Adaptive Differential Evolution for SS-Compensated Wireless Power Transfer Systems. IEEE Transactions on Industrial Informatics, 2019, 15, 6101-6113.	7.2	63
67	High-Power-Density Single-Phase Three-Level Flying-Capacitor Buck PFC Rectifier. IEEE Transactions on Power Electronics, 2019, 34, 10833-10844.	5.4	38
68	A Gallium Nitride (GaN)-Based Single-Inductor Multiple-Output (SIMO) Inverter With Multi-Frequency AC Outputs. IEEE Transactions on Power Electronics, 2019, 34, 10856-10873.	5.4	18
69	Universal Switched-Capacitor Converter for DC-DC, AC-DC, and DC-AC Applications. , 2019, , .		2
70	Efficient Improvement of Photovoltaic-Battery Systems in Standalone DC Microgrids Using a Local Hierarchical Control for the Battery System. IEEE Transactions on Power Electronics, 2019, 34, 10796-10807.	5.4	60
71	A Practical Design Approach for Single-Inductor Multiple-Output (SIMO) DC-AC Inverter. , 2019, , .		0
72	Multimode LLC Resonant DCâ^'DC Converters for Wide Range Input Voltage. , 2019, , .		2

#	Article	IF	CITATIONS
73	Analysis and Design of the Class-E Resonant Regulated Wireless Power Receiver. , 2019, , .		O
74	Communication-Free Control Scheme for Qi-Compliant Wireless Power Transfer Systems. , 2019, , .		9
75	Adaptive Current Sharing of Distributed Battery Systems in DC Microgrids Using Adaptive Virtual Resistance-Based Droop Control. , 2019, , .		23
76	Use of Integrated Photovoltaic-Electric Spring System as a Power Balancer in Power Distribution Networks. IEEE Transactions on Power Electronics, 2019, 34, 5312-5324.	5.4	33
77	A Single-Phase Three-Level Flying-Capacitor PFC Rectifier Without Electrolytic Capacitors. IEEE Transactions on Power Electronics, 2019, 34, 6411-6424.	5.4	30
78	On Nonlinear Control of Single-Phase Converters With Active Power Decoupling Function. IEEE Transactions on Power Electronics, 2019, 34, 5903-5915.	5.4	44
79	Minimum Active Switch Requirements for Single-Phase PFC Rectifiers Without Electrolytic Capacitors. IEEE Transactions on Power Electronics, 2019, 34, 5524-5536.	5.4	24
80	Multiphase-Interleaved High Step-Up DC/DC Resonant Converter for Wide Load Range. IEEE Transactions on Power Electronics, 2019, 34, 7703-7718.	5.4	31
81	Coupledâ€inductor based diode assisted boost inverter for achieving highgain. IET Power Electronics, 2019, 12, 410-420.	1.5	6
82	Dynamic Optical Power Measurements and Modeling of Light-Emitting Diodes Based on a Photodetector System and Photo-Electro-Thermal Theory. IEEE Transactions on Power Electronics, 2019, 34, 10058-10068.	5.4	10
83	Practical Evaluation of Droop and Consensus Control of Distributed Electric Springs for Both Voltage and Frequency Regulation in Microgrid. IEEE Transactions on Power Electronics, 2019, 34, 6947-6959.	5.4	35
84	Reverse Electrodialysis Energy Harvesting System Using High-Gain Step-Up DC/DC Converter. IEEE Transactions on Sustainable Energy, 2018, 9, 1578-1587.	5.9	10
85	Small-Signal Model and Stability of Electric Springs in Power Grids. IEEE Transactions on Smart Grid, 2018, 9, 857-865.	6.2	51
86	Mitigating Distribution Power Loss of DC Microgrids With DC Electric Springs. IEEE Transactions on Smart Grid, 2018, 9, 5897-5906.	6.2	65
87	Hybrid-DC Electric Springs for DC Voltage Regulation and Harmonic Cancellation in DC Microgrids. IEEE Transactions on Power Electronics, 2018, 33, 1167-1177.	5.4	40
88	Adaptive Reference Model Predictive Control With Improved Performance for Voltage-Source Inverters. IEEE Transactions on Control Systems Technology, 2018, 26, 724-731.	3.2	48
89	Enhanced Automatic-Power-Decoupling Control Method for Single-Phase AC-to-DC Converters. IEEE Transactions on Power Electronics, 2018, 33, 1816-1828.	5.4	65
90	Parabolic-Modulated Sliding-Mode Voltage Control of a Buck Converter. IEEE Transactions on Industrial Electronics, 2018, 65, 844-854.	5.2	36

#	Article	IF	Citations
91	Plug-and-Play Voltage Ripple Mitigator for DC Links in Hybrid AC–DC Power Grids With Local Bus-Voltage Control. IEEE Transactions on Industrial Electronics, 2018, 65, 687-698.	5.2	51
92	A General Approach to Programmable and Reconfigurable Emulation of Power Impedances. IEEE Transactions on Power Electronics, 2018, 33, 259-271.	5.4	30
93	A Configuration of Storage System for DC Microgrids. IEEE Transactions on Power Electronics, 2018, 33, 3722-3733.	5.4	57
94	Optimal Design of Integrated Magnetics for Differential Rectifiers and Inverters. IEEE Transactions on Power Electronics, 2018, 33, 4616-4626.	5.4	9
95	Low-Power Multichannel Wireless Transmitter. IEEE Transactions on Power Electronics, 2018, 33, 5016-5028.	5.4	16
96	Dynamic Improvement of Series–Series Compensated Wireless Power Transfer Systems Using Discrete Sliding Mode Control. IEEE Transactions on Power Electronics, 2018, 33, 6351-6360.	5.4	145
97	A Class E ² Inverter-Rectifier-Based Bidirectional Wireless Power Transfer System., 2018,,.		8
98	Opportunities for Performance Improvement of Single-Phase Power Converters through Enhanced Automatic-Power-Decoupling Control. , 2018, , .		3
99	A Frequency-Sweep Based Load Monitoring Method for Weakly-Coupled Series-Series Compensated Wireless Power Transfer Systems. , 2018, , .		19
100	Nonisolated Harmonics-Boosted Resonant DC/DC Converter With High-Step-Up Gain. IEEE Transactions on Power Electronics, 2018, 33, 7770-7781.	5.4	24
101	Achieving Multiple Functions of Three-Phase Electric Springs in Unbalanced Three-Phase Power Systems Using the Instantaneous Power Theory. IEEE Transactions on Power Electronics, 2018, 33, 5784-5795.	5.4	29
102	Optimal Design of Complex Switched-Capacitor Converters Via Energy-Flow-Path Analysis. IEEE Transactions on Power Electronics, 2017, 32, 1170-1185.	5.4	19
103	Precise Color Control of Red-Green-Blue Light-Emitting Diode Systems. IEEE Transactions on Power Electronics, 2017, 32, 3063-3074.	5.4	13
104	Cascaded High-Voltage-Gain Bidirectional Switched-Capacitor DC–DC Converters for Distributed Energy Resources Applications. IEEE Transactions on Power Electronics, 2017, 32, 1220-1231.	5.4	53
105	DC Electric Springs—A Technology for Stabilizing DC Power Distribution Systems. IEEE Transactions on Power Electronics, 2017, 32, 1088-1105.	5.4	81
106	Enhanced digital PI control with state-variable feedback loop for DC electric springs., 2017,,.		6
107	A constant-frequency parabolic-modulation-based sliding mode controller for buck converters. , 2017, , .		3
108	A Comprehensive Analysis and Control Strategy for Nullifying Negative- and Zero-Sequence Currents in an Unbalanced Three-Phase Power System Using Electric Springs. IEEE Transactions on Power Electronics, 2017, 32, 7635-7650.	5 . 4	16

#	Article	IF	Citations
109	Use of Smart Loads for Power Quality Improvement. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5, 504-512.	3.7	65
110	Dynamic improvement of wireless power transfer systems with maximum energy efficiency tracking by sliding mode control. , 2017 , , .		3
111	A Single-Stage Two-Switch PFC Rectifier With Wide Output Voltage Range and Automatic AC Ripple Power Decoupling. IEEE Transactions on Power Electronics, 2017, 32, 6971-6982.	5.4	50
112	An Off-line Single-Inductor Multiple-Output LED Driver With High Dimming Precision and Full Dimming Range. IEEE Transactions on Power Electronics, 2017, 32, 4716-4727.	5.4	53
113	Extending the Operating Range of Electric Spring Using Back-To-Back Converter: Hardware Implementation and Control. IEEE Transactions on Power Electronics, 2017, 32, 5171-5179.	5.4	72
114	Energy exchange coordination of off-grid charging stations with Vehicular Energy Network., 2017,,.		5
115	Voltage and frequency control of electric spring based smart loads. , 2016, , .		20
116	DC electric springs with modified droop control for storage reduction in DC microgrids. , 2016, , .		1
117	Non-isolated high-step-up resonant DC/DC converter. , 2016, , .		3
118	Integrated magnetics for power density improvement of differential rectifiers and inverters. , 2016, , .		1
119	Adaptive reference model predictive control for power electronics. , 2016, , .		3
120	Closedâ€loop waveform control of boost inverter. IET Power Electronics, 2016, 9, 1808-1818.	1.5	13
121	Compact modular switched-capacitor DC/DC converters with exponential voltage gain. , 2016, , .		2
122	Electric Springs with Coordinated Battery Management for Reducing Voltage and Frequency Fluctuations in Microgrids. IEEE Transactions on Smart Grid, 2016, , 1-1.	6.2	46
123	Multifunctional DC Electric Springs for Improving Voltage Quality of DC Grids. IEEE Transactions on Smart Grid, 2016, , 1-1.	6.2	34
124	Distributed voltage control with electric springs: Comparison with STATCOM., 2016,,.		2
125	Simultaneous voltage and current compensation of the 3-phase electric spring with decomposed voltage control. , 2016, , .		1
126	Reduction of storage capacity in DC microgrids using PV-embedded series DC electric springs. , 2016, , .		8

#	Article	lF	Citations
127	Morphing switched-capacitor step-down DC-DC converters with variable conversion ratio., 2016,,.		1
128	A survey, classification, and critical review of light-emitting diode drivers. IEEE Transactions on Power Electronics, 2016, 31, 1503-1516.	5.4	197
129	Morphing switched-capacitor converters with variable conversion ratio. IEEE Transactions on Power Electronics, 2016, 31, 5680-5693.	5.4	3
130	Enhanced Single-Phase Full-Bridge Inverter With Minimal Low-Frequency Current Ripple. IEEE Transactions on Industrial Electronics, 2016, 63, 937-943.	5.2	55
131	Augmented Buck Converter Design using Resonant Circuits for Fast Transient Recovery. IEEE Transactions on Power Electronics, 2016, 31, 5666-5679.	5.4	15
132	Single-Stage AC/DC Single-Inductor Multiple-Output LED Drivers. IEEE Transactions on Power Electronics, 2016, 31, 5837-5850.	5.4	67
133	Integration of an Active Filter and a Single-Phase AC/DC Converter With Reduced Capacitance Requirement and Component Count. IEEE Transactions on Power Electronics, 2016, 31, 4121-4137.	5.4	162
134	Precise Dimming and Color Control of LED Systems Based on Color Mixing. IEEE Transactions on Power Electronics, 2016, 31, 65-80.	5.4	68
135	Decoupled Power Angle and Voltage Control of Electric Springs. IEEE Transactions on Power Electronics, 2016, 31, 1216-1229.	5.4	84
136	Non-linear feedback control of robust bi-color LED lighting. , 2015, , .		1
137	Dynamic modeling of partial shading on photovoltaic arrays. , 2015, , .		5
138	Control of electric springs with coordinated battery management. , 2015, , .		3
139	Distributed grid voltage and utility frequency stabilization via shunt-type electric springs. , 2015, , .		4
140	Stability design of electric springs in power grids. , 2015, , .		2
141	Family of cascaded high-voltage-gain bidirectional switched-capacitor DC-DC converters. , 2015, , .		13
142	Power angle and amplitude decoupling control method for electric springs and static synchronous series compensators. , $2015, , .$		1
143	Analysis and Modeling of High-Power Phosphor-Coated White Light-Emitting Diodes With a Large Surface Area. IEEE Transactions on Power Electronics, 2015, 30, 3334-3344.	5.4	28
144	Mitigating Voltage and Frequency Fluctuation in Microgrids Using Electric Springs. IEEE Transactions on Smart Grid, 2015, 6, 508-515.	6.2	152

#	Article	IF	CITATIONS
145	Electric Springs for Reducing Power Imbalance in Three-Phase Power Systems. IEEE Transactions on Power Electronics, 2015, 30, 3601-3609.	5.4	113
146	Nonlinear dimming and correlated color temperature control of bicolor white LED systems. IEEE Transactions on Power Electronics, 2015, 30, 6934-6947.	5.4	44
147	DC electric springs - An emerging technology for DC grids. , 2015, , .		20
148	Towards a smart energy network: The roles of fuel/electrolysis cells and technological perspectives. International Journal of Hydrogen Energy, 2015, 40, 6866-6919.	3.8	141
149	Bi-directional active-filter-integrated AC/DC converter without electrolytic capacitor and extra power switches. , 2015 , , .		3
150	Electric springs for improving transient stability of micro-grids in islanding operations. , 2015, , .		4
151	Reduction of Thermal Resistance and Optical Power Loss Using Thin-Film Light-Emitting Diode (LED) Structure. IEEE Transactions on Industrial Electronics, 2015, 62, 6925-6933.	5.2	10
152	Reset-sensing quasi-V< sup> 2< sup> single-inductor multiple-output buck converter with reduced cross-regulation. , 2015, , .		0
153	Sliding mode control for improving the performance of PV inverter with MPPT $\hat{a} \in \text{``}$ A comparison between SM and PI control. , 2015, , .		7
154	Series and shunt DC electric springs. , 2015, , .		14
154 155	Series and shunt DC electric springs. , 2015, , . Nonlinear dynamic power tracking of low-power wind energy conversion system. IEEE Transactions on Power Electronics, 2015, 30, 5223-5236.	5.4	47
	Nonlinear dynamic power tracking of low-power wind energy conversion system. IEEE Transactions	5.4	
155	Nonlinear dynamic power tracking of low-power wind energy conversion system. IEEE Transactions on Power Electronics, 2015, 30, 5223-5236. Power Flow Analysis and Critical Design Issues of Retrofit Light-Emitting Diode (LED) Light Bulb. IEEE		47
155 156	Nonlinear dynamic power tracking of low-power wind energy conversion system. IEEE Transactions on Power Electronics, 2015, 30, 5223-5236. Power Flow Analysis and Critical Design Issues of Retrofit Light-Emitting Diode (LED) Light Bulb. IEEE Transactions on Power Electronics, 2015, 30, 3830-3840. Direct AC/DC Rectifier With Mitigated Low-Frequency Ripple Through Inductor-Current Waveform	5.4	10
155 156 157	Nonlinear dynamic power tracking of low-power wind energy conversion system. IEEE Transactions on Power Electronics, 2015, 30, 5223-5236. Power Flow Analysis and Critical Design Issues of Retrofit Light-Emitting Diode (LED) Light Bulb. IEEE Transactions on Power Electronics, 2015, 30, 3830-3840. Direct AC/DC Rectifier With Mitigated Low-Frequency Ripple Through Inductor-Current Waveform Control. IEEE Transactions on Power Electronics, 2015, 30, 4336-4348. Distributed Voltage Control with Electric Springs: Comparison with STATCOM. IEEE Transactions on	5.4 5.4	47 10 69
155 156 157	Nonlinear dynamic power tracking of low-power wind energy conversion system. IEEE Transactions on Power Electronics, 2015, 30, 5223-5236. Power Flow Analysis and Critical Design Issues of Retrofit Light-Emitting Diode (LED) Light Bulb. IEEE Transactions on Power Electronics, 2015, 30, 3830-3840. Direct AC/DC Rectifier With Mitigated Low-Frequency Ripple Through Inductor-Current Waveform Control. IEEE Transactions on Power Electronics, 2015, 30, 4336-4348. Distributed Voltage Control with Electric Springs: Comparison with STATCOM. IEEE Transactions on Smart Grid, 2015, 6, 209-219. High-Frequency-Fed Unity Power-Factor AC–DC Power Converter With One Switching Per Cycle. IEEE	5.4 5.4 6.2	47 10 69 95
155 156 157 158	Nonlinear dynamic power tracking of low-power wind energy conversion system. IEEE Transactions on Power Electronics, 2015, 30, 5223-5236. Power Flow Analysis and Critical Design Issues of Retrofit Light-Emitting Diode (LED) Light Bulb. IEEE Transactions on Power Electronics, 2015, 30, 3830-3840. Direct AC/DC Rectifier With Mitigated Low-Frequency Ripple Through Inductor-Current Waveform Control. IEEE Transactions on Power Electronics, 2015, 30, 4336-4348. Distributed Voltage Control with Electric Springs: Comparison with STATCOM. IEEE Transactions on Smart Grid, 2015, 6, 209-219. High-Frequency-Fed Unity Power-Factor AC–DC Power Converter With One Switching Per Cycle. IEEE Transactions on Power Electronics, 2015, 30, 2148-2156.	5.4 5.4 6.2	47 10 69 95

#	Article	IF	Citations
163	Classification of Auxiliary Circuit Schemes for Feeding Fast Load Transients in Switching Power Supplies. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 930-942.	3.5	12
164	Pre-Energized Auxiliary Circuits for Very Fast Transient Loads: Coping With Load-Informed Power Management for Computer Loads. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 637-648.	3. 5	15
165	Development of an ambient air temperature prediction model. Energy and Buildings, 2014, 73, 166-170.	3.1	21
166	Reducing three-phase power imbalance with electric springs. , 2014, , .		10
167	Low-power wind energy conversion system with variable structure control for DC grids. , 2014, , .		0
168	Dynamic characteristics of boost inverter with waveform control. , 2014, , .		5
169	Electric spring for power quality improvement. , 2014, , .		49
170	A Family of Exponential Step-Down Switched-Capacitor Converters and Their Applications in Two-Stage Converters. IEEE Transactions on Power Electronics, 2014, 29, 1870-1880.	5.4	59
171	Critical design issues of retrofit light-emitting diode (LED) light bulb. , 2014, , .		6
172	Resonant augmentation circuits for a buck converter achieving minimum-time voltage recovery from load transients. , 2014, , .		1
173	Components sizing of hybrid energy systems via the optimization ofÂpower dispatch simulations. Energy, 2013, 52, 165-172.	4.5	81
174	A series of exponential step-down switched-capacitor converters and their applications in two-stage converters. , $2013, \ldots$		5
175	Pre-energized compact auxiliary circuit to buffer loads from fast transients with the goal of managing load-informed power. , 2013, , .		3
176	Transient Mitigation of DC–DC Converters for High Output Current Slew Rate Applications. IEEE Transactions on Power Electronics, 2013, 28, 2377-2388.	5.4	32
177	General Steady-State Analysis and Control Principle of Electric Springs With Active and Reactive Power Compensations. IEEE Transactions on Power Electronics, 2013, 28, 3958-3969.	5.4	215
178	A review and classification of LED ballasts. , 2013, , .		18
179	Use of Hooke's law for stabilizing future smart grid & amp; #x2014; The electric spring concept., 2013,,.		27
180	Phase-Shift Interleaving Control of Variable-Phase Switched-Capacitor Converters. IEEE Transactions on Industrial Electronics, 2013, 60, 5575-5584.	5. 2	29

#	Article	IF	Citations
181	Mitigation of Low-Frequency Current Ripple in Fuel-Cell Inverter Systems Through Waveform Control. IEEE Transactions on Power Electronics, 2013, 28, 779-792.	5.4	205
182	On Energy Efficiency of Switched-Capacitor Converters. IEEE Transactions on Power Electronics, 2013, 28, 862-876.	5.4	151
183	Assessment of waveform control method for mitigation of low-frequency current ripple. , 2013, , .		5
184	Waveform control of fuel-cell inverter systems. , 2012, , .		4
185	On the Color Stability of Phosphor-Converted White LEDs Under DC, PWM, and Bilevel Drive. IEEE Transactions on Power Electronics, 2012, 27, 974-984.	5.4	62
186	A Flicker-Free Electrolytic Capacitor-Less AC–DC LED Driver. IEEE Transactions on Power Electronics, 2012, 27, 4540-4548.	5.4	361
187	Converter Topologies. Advances in Industrial Control, 2012, , 3-24.	0.4	1
188	Analysis and Design of a High-Voltage-Gain Hybrid Switched-Capacitor Buck Converter. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 1132-1141.	3.5	37
189	Switched-capacitor converters with multiphase interleaving control., 2011,,.		9
190	Analysis of a high-voltage-gain hybrid switched-capacitor buck converter. , 2011, , .		3
191	Adaptive Mixed On-Time and Switching Frequency Control of a System of Interleaved Switched-Capacitor Converters. IEEE Transactions on Power Electronics, 2011, 26, 364-380.	5.4	84
192	Stationary and Adaptive Color-Shift Reduction Methods Based on the Bilevel Driving Technique for Phosphor-Converted White LEDs. IEEE Transactions on Power Electronics, 2011, 26, 1943-1953.	5.4	27
193	A theoretical study of inlet relative humidity control in PEM fuel cell. International Journal of Hydrogen Energy, 2011, 36, 11871-11885.	3.8	43
194	Robust current control for boost PFC converters from a sliding mode viewpoint. International Journal of Circuit Theory and Applications, 2011, 39, 543-556.	1.3	14
195	Treatment of two-phase flow in cathode gas channel for an improved one-dimensional proton exchange membrane fuel cell model. International Journal of Hydrogen Energy, 2011, 36, 3941-3955.	3.8	5
196	Transient mitigation of DC-DC converters using an auxiliary switching circuit., 2011,,.		5
197	Derivation of a Fast Mathematical Model of PEM Fuel Cell With Two-Phase Water Transport. IEEE Transactions on Energy Conversion, 2011, 26, 216-226.	3.7	5
198	Characterization of the dynamic response of proton exchange membrane fuel cells – A numerical study. International Journal of Hydrogen Energy, 2010, 35, 11861-11877.	3.8	49

#	Article	IF	Citations
199	A new visit to an old problem in switched-capacitor converters. , 2010, , .		22
200	Modeling the Effects of Gas Channel Flooding on the Voltage-Current Characteristics of PEM Fuel Cell. , $2010, $, .		0
201	General \$n\$-Level Driving Approach for Improving Electrical-to-Optical Energy-Conversion Efficiency of Fast-Response Saturable Lighting Devices. IEEE Transactions on Industrial Electronics, 2010, 57, 1342-1353.	5.2	69
202	Interleaved switched-capacitor converters with adaptive control., 2010,,.		12
203	Switched-capacitor converter configuration with low EMI emission obtained by interleaving and its large-signal modeling., 2009,,.		27
204	Implementation of bi-level current driving technique for improved efficacy of high-power LEDs. , 2009, , .		5
205	On the driving techniques for high-brightness LEDs. , 2009, , .		10
206	Mitigating energy wastage of light-emitting diodes using discretised multilevel pulsation. Electronics Letters, 2009, 45, 522.	0.5	1
207	Fast response low harmonic distortion control scheme for voltage source inverters. IET Power Electronics, 2009, 2, 574-584.	1.5	33
208	Variable Structure Modeling and Design of Switched-Capacitor Converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56, 2132-2142.	3.5	54
209	Stability analysis of fuzzy-model-based control systems: application on regulation of switching DC–DC converter. IET Control Theory and Applications, 2009, 3, 1093-1106.	1.2	38
210	A Unified Approach for the Derivation of Robust Control for Boost PFC Converters. IEEE Transactions on Power Electronics, 2009, 24, 2531-2544.	5.4	53
211	Bilevel Current Driving Technique for LEDs. IEEE Transactions on Power Electronics, 2009, 24, 2920-2932.	5.4	114
212	Boundary Control With Ripple-Derived Switching Surface for DC–AC Inverters. IEEE Transactions on Power Electronics, 2009, 24, 2873-2885.	5.4	11
213	Boundary control of DC-AC inverters using ripple-derived switching surface. , 2009, , .		0
214	On Driving Techniques for LEDs: Toward a Generalized Methodology. IEEE Transactions on Power Electronics, 2009, 24, 2967-2976.	5.4	118
215	Wireless control of load current sharing information for parallel-connected DC/DC power converters. IET Power Electronics, 2009, 2, 14-21.	1.5	22
216	Fundamental Considerations of Three-Level DC–DC Converters: Topologies, Analyses, and Control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55, 3733-3743.	3.5	203

#	Article	IF	Citations
217	Nonlinear control of switched-capacitor converter using sliding mode control approach., 2008,,.		12
218	Indirect Sliding Mode Control of Power Converters Via Double Integral Sliding Surface. IEEE Transactions on Power Electronics, 2008, 23, 600-611.	5.4	193
219	General Design Issues of Sliding-Mode Controllers in DC–DC Converters. IEEE Transactions on Industrial Electronics, 2008, 55, 1160-1174.	5.2	461
220	Analysis and design of repetitive controller for harmonic elimination in PWM voltage source inverter systems. IET Power Electronics, 2008, 1 , 497.	1.5	72
221	Constant-frequency reduced-state sliding mode current controller for Cluk converters. IET Power Electronics, 2008, 1, 466.	1.5	44
222	General control for boost PFC converter from a sliding mode viewpoint. Power Electronics Specialist Conference (PESC), IEEE, 2008, , .	0.0	18
223	A fast response zero-voltage-transition pulse-width modulation boost converter using a variable gain control technique. , 2008, , .		1
224	Method of alleviating overcompensation problem in zero-voltage-transition pulse-width-modulation boost converters. Electronics Letters, 2008, 44, 444.	0.5	2
225	Sliding Mode Repetitive Control of PWM Voltage Source Inverter. , 2007, , .		7
226	A Fast-Response Sliding-Mode Controller for Boost-Type Converters With a Wide Range of Operating Conditions. IEEE Transactions on Industrial Electronics, 2007, 54, 3276-3286.	5.2	181
227	A Double-Integral Type of Indirect Sliding Mode Controllers for Power Converters. , 2007, , .		4
228	Optimal design of repetitive controller for harmonic elimination in PWM voltage source inverters. , 2007, , .		13
229	Special family of PWM-based sliding-mode voltage controllers for basic DC–DC converters in discontinuous conduction mode. IET Electric Power Applications, 2007, 1, 64.	1.1	36
230	Design of Pulsewidth-Modulation Based Sliding Mode Controllers for Power Converters in Discontinuous Conduction Mode. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	2
231	Adaptive feedforward and feedback control schemes for sliding mode controlled power converters. IEEE Transactions on Power Electronics, 2006, 21, 182-192.	5.4	193
232	A unified approach to the design of PWM-based sliding-mode voltage controllers for basic DC-DC converters in continuous conduction mode. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2006, 53, 1816-1827.	0.1	261
233	Hybrid Dual-Operating-Mode PWM Based Sliding Mode Controllers for DC-DC Converters. , 2006, , .		1
234	Implementation of Pulse-width-Modulation Based Sliding Mode Controller for Boost Converters. IEEE Power Electronics Letters, 2005, 3, 130-135.	1.1	88

#	Article	IF	Citations
235	Design of PWM based sliding mode voltage controller for DC-DC converters operating in continuous conduction mode. , 2005, , .		7
236	Adaptive control schemes for stabilizing switching frequency of sliding mode controlled power converters. , 2005, , .		3
237	On the Practical Design of a Sliding Mode Voltage Controlled Buck Converter. IEEE Transactions on Power Electronics, 2005, 20, 425-437.	5.4	280
238	A Fixed-Frequency Pulsewidth Modulation Based Quasi-Sliding-Mode Controller for Buck Converters. IEEE Transactions on Power Electronics, 2005, 20, 1379-1392.	5.4	183
239	Real-time computer-based torque measurement of switched reluctance motors. International Journal of Electronics, 2002, 89, 693-715.	0.9	3
240	A systematic design procedure for sliding mode controlled buck converters. , 0, , .		0
241	A pulse-width-modulation based sliding mode controller for buck converters. , 0, , .		19
242	Experimental investigation of a sliding mode controlled buck converter., 0,,.		0
243	An adaptive sliding mode controller for buck converter in continuous conduction mode. , 0, , .		17
244	A family of PWM based sliding mode voltage controllers for basic DC-DC converters. , 0, , .		0
245	A Pulsewidth Modulation Based Integral Sliding Mode Current Controller for Boost Converters. , 0, ,		15
246	An Evaluation of the Practicality of Sliding Mode Controllers in DC-DC Converters and Their General Design Issues. , 0, , .		12