
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1920226/publications.pdf Version: 2024-02-01

<u>CHUNYU ΡΛΝ</u>

#	Article	IF	CITATIONS
1	Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chemistry, 2017, 19, 4132-4140.	4.6	861
2	Raman Spectroscopy: A New Approach to Measure the Percentage of Anatase TiO ₂ Exposed (001) Facets. Journal of Physical Chemistry C, 2012, 116, 7515-7519.	1.5	672
3	Characterization of Oxygen Vacancy Associates within Hydrogenated TiO ₂ : A Positron Annihilation Study. Journal of Physical Chemistry C, 2012, 116, 22619-22624.	1.5	487
4	Broadband Photodetectors Based on Graphene–Bi ₂ Te ₃ Heterostructure. ACS Nano, 2015, 9, 1886-1894.	7.3	338
5	TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. Journal of Materials Science, 2011, 46, 2622-2626.	1.7	333
6	Influence of graphene microstructures on electrochemical performance for supercapacitors. Progress in Natural Science: Materials International, 2015, 25, 379-385.	1.8	329
7	Polypyrrole-Decorated Ag-TiO ₂ Nanofibers Exhibiting Enhanced Photocatalytic Activity under Visible-Light Illumination. ACS Applied Materials & Interfaces, 2013, 5, 6201-6207.	4.0	237
8	Black Phosphorus–Polymer Composites for Pulsed Lasers. Advanced Optical Materials, 2015, 3, 1447-1453.	3.6	228
9	From Copper Nanocrystalline to CuO Nanoneedle Array:  Synthesis, Growth Mechanism, and Properties. Journal of Physical Chemistry C, 2007, 111, 5050-5056.	1.5	173
10	Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Scientific Reports, 2015, 5, 11830.	1.6	155
11	Photoreactivity and Mechanism of g-C ₃ N ₄ and Ag Co-Modified Bi ₂ WO ₆ Microsphere under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2016, 4, 3017-3023.	3.2	152
12	Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diamond and Related Materials, 2012, 24, 1-5.	1.8	149
13	Nanotubes from methane flames. Chemical Physics Letters, 2001, 340, 237-241.	1.2	143
14	Mo + C Codoped TiO ₂ Using Thermal Oxidation for Enhancing Photocatalytic Activity. ACS Applied Materials & Interfaces, 2010, 2, 1173-1176.	4.0	143
15	Raman spectra of carbon nanotubes and nanofibers prepared by ethanol flames. Journal of Materials Science, 2004, 39, 1091-1094.	1.7	124
16	Facile Synthesis of Carbon Nanosphere/NiCo2O4 Core-shell Sub-microspheres for High Performance Supercapacitor. Scientific Reports, 2015, 5, 12903.	1.6	115
17	Present Perspectives of Advanced Characterization Techniques in TiO ₂ -Based Photocatalysts. ACS Applied Materials & Interfaces, 2017, 9, 23265-23286.	4.0	112
18	Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Scientific Reports, 2016, 6, 29788.	1.6	111

#	Article	IF	CITATIONS
19	Nitrogen Self-Doped Porous Carbon for High-Performance Supercapacitors. ACS Applied Energy Materials, 2020, 3, 1585-1592.	2.5	109
20	Preparation and Enhanced Photocatalytic Activity of TiO ₂ Nanocrystals with Internal Pores. ACS Applied Materials & Interfaces, 2014, 6, 1608-1615.	4.0	101
21	Preparation of porous micro–nano-structure NiO/ZnO heterojunction and its photocatalytic property. RSC Advances, 2014, 4, 3090-3095.	1.7	97
22	Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors. Green Chemistry, 2022, 24, 3864-3894.	4.6	97
23	Photocatalytic and degradation mechanisms of anatase TiO2: a HRTEM study. Catalysis Science and Technology, 2011, 1, 273.	2.1	89
24	Highly Sensitive, Durable, and Multifunctional Sensor Inspired by a Spider. ACS Applied Materials & Interfaces, 2017, 9, 19955-19962.	4.0	89
25	Preparation of 3D reticulated ZnO/CNF/NiO heteroarchitecture for high-performance photocatalysis. Applied Catalysis B: Environmental, 2015, 166-167, 217-223.	10.8	84
26	Supercapacitance of Solid Carbon Nanofibers Made from Ethanol Flames. Journal of Physical Chemistry C, 2008, 112, 3612-3618.	1.5	83
27	High quality graphene sheets from graphene oxide by hot-pressing. Carbon, 2013, 54, 143-148.	5.4	82
28	MXene/N-Doped Carbon Foam with Three-Dimensional Hollow Neuron-like Architecture for Freestanding, Highly Compressible All Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 44777-44788.	4.0	82
29	Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flames. Micron, 2004, 35, 461-468.	1.1	77
30	Synthesis of nitrogen doped graphene from graphene oxide within an ammonia flame for high performance supercapacitors. RSC Advances, 2014, 4, 55394-55399.	1.7	77
31	First-Principles Study of Formaldehyde Adsorption on TiO ₂ Rutile (110) and Anatase (001) Surfaces. Journal of Physical Chemistry C, 2012, 116, 8044-8053.	1.5	76
32	Electrospun nanofibers of p-type BiFeO ₃ /n-type TiO ₂ hetero-junctions with enhanced visible-light photocatalytic activity. RSC Advances, 2014, 4, 31941.	1.7	75
33	Conductive enhancement of copper/graphene composites based on high-quality graphene. RSC Advances, 2015, 5, 80428-80433.	1.7	74
34	Single-Atom Tungsten-Doped CoP Nanoarrays as a High-Efficiency pH-Universal Catalyst for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 14825-14832.	3.2	73
35	Green mass synthesis of graphene oxide and its MnO2 composite for high performance supercapacitor. Electrochimica Acta, 2019, 312, 11-21.	2.6	72
36	Engineering Nanostructured <scp><scp>Bi₂WO₆–TiO₂</scp></scp> Toward Effective Utilization of Natural Light in Photocatalysis. Journal of the American Ceramic Society, 2011, 94, 4157-4161.	1.9	68

#	Article	IF	CITATIONS
37	Quick and Facile Preparation of Visible light-Driven TiO2 Photocatalyst with High Absorption and Photocatalytic Activity. Scientific Reports, 2014, 4, 7045.	1.6	63
38	Rational Construction of a WS ₂ /CoS ₂ Heterostructure Electrocatalyst for Efficient Hydrogen Evolution at All pH Values. ACS Sustainable Chemistry and Engineering, 2020, 8, 4474-4480.	3.2	63
39	Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles. Applied Surface Science, 2011, 257, 8121-8126.	3.1	61
40	Surface doping of La ions into ZnO nanocrystals to lower the optimal working temperature for HCHO sensing properties. Physical Chemistry Chemical Physics, 2015, 17, 27437-27445.	1.3	61
41	Synthesis of flower-liked twin crystal ternary Ni/NiS/Zn0.2Cd0.8S catalyst for highly efficient hydrogen production. Chemical Engineering Journal, 2021, 406, 126878.	6.6	57
42	Electric field induced growth of well aligned carbon nanotubes from ethanol flames. Nanotechnology, 2006, 17, 1016-1021.	1.3	56
43	Field emission from carbon nanotube bundle arrays grown on self-aligned ZnO nanorods. Nanotechnology, 2007, 18, 155702.	1.3	56
44	Preparation of Sandwich-like NiCo2O4/rGO/NiO Heterostructure on Nickel Foam for High-Performance Supercapacitor Electrodes. Nano-Micro Letters, 2017, 9, 16.	14.4	56
45	Preparation of three-dimensional graphene foam for high performance supercapacitors. Progress in Natural Science: Materials International, 2017, 27, 177-181.	1.8	56
46	Formaldehyde on TiO2 anatase (1 0 1): A DFT study. Computational Materials Science, 2012, 51, 389-395.	1.4	55
47	Synthesis and photocatalytic activity of polyaniline–TiO2 composites with bionic nanopapilla structure. Journal of Nanoparticle Research, 2011, 13, 3157-3165.	0.8	53
48	Low temperature thermal oxidation synthesis of ZnO nanoneedles and the growth mechanism. Materials Chemistry and Physics, 2009, 115, 74-79.	2.0	52
49	Preparation of graphene and TiO2 layer by layer composite with highly photocatalytic efficiency. Progress in Natural Science: Materials International, 2011, 21, 467-471.	1.8	52
50	Hierarchical porous "skin/skeleton―like MXene/biomass derived carbon fibers heterostructure for self-supporting, flexible all solid-state supercapacitors. Journal of Hazardous Materials, 2021, 410, 124565.	6.5	51
51	Functionalization of multi-walled carbon nanotubes grafted with self-generated functional groups and their polyamide 6 composites. Carbon, 2010, 48, 721-729.	5.4	49
52	Interaction of hydrogen with defects in ZnO nanoparticles – studied by positron annihilation, Raman and photoluminescence spectroscopy. CrystEngComm, 2014, 16, 1207.	1.3	49
53	Interface Enhancement of Glass Fiber Reinforced Vinyl Ester Composites with Flame-Synthesized Carbon Nanotubes and Its Enhancing Mechanism. ACS Applied Materials & Interfaces, 2011, 3, 534-538.	4.0	48
54	Large-scale synthesis of single-crystalline rutile TiO2 nanorods via a one-step solution route. Journal of Crystal Growth, 2007, 306, 117-122.	0.7	47

#	Article	IF	CITATIONS
55	Tuning the Electromagnetic Synergistic Effects for Enhanced Microwave Absorption via Magnetic Nickel Core Encapsulated in Hydrogenated Anatase TiO ₂ Shell. ACS Sustainable Chemistry and Engineering, 2018, 6, 12046-12054.	3.2	47
56	Direct synthesis of high concentration N-doped coiled carbon nanofibers from amine flames and its electrochemical properties. Journal of Power Sources, 2011, 196, 7868-7873.	4.0	45
57	Preparation of high-quality graphene via electrochemical exfoliation & spark plasma sintering and its applications. Applied Surface Science, 2017, 397, 213-219.	3.1	41
58	Preparation of Cu- graphene coating via electroless plating for high mechanical property and corrosive resistance. Journal of Alloys and Compounds, 2019, 777, 877-885.	2.8	41
59	Preparation and characterization of \hat{I}^3 -MnO2/CNTs nanocomposite. Materials Letters, 2007, 61, 934-936.	1.3	40
60	High Concentration Substitutional <scp>N</scp> â€Doped <scp>TiO₂</scp> Film: Preparation, Characterization, and Photocatalytic Property. Journal of the American Ceramic Society, 2011, 94, 4078-4083.	1.9	40
61	Facile synthesis of PANI-modified CoFe2O4–TiO2 hierarchical flower-like nanoarchitectures with high photocatalytic activity. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	40
62	Construction of Direct Z-Scheme Heterojunction NiFe-Layered Double Hydroxide (LDH)/Zn _{0.5} Cd _{0.5} S for Photocatalytic H ₂ Evolution. ACS Applied Materials & Interfaces, 2021, 13, 39331-39340.	4.0	40
63	Synthesis of carbon nanotubes on pulse plated Ni nanocrystalline substrate in ethanol flames. Carbon, 2005, 43, 2264-2271.	5.4	38
64	Enhanced Electrochemical Capacitance of Nitrogen-Doped Carbon Nanotubes Synthesized from Amine Flames. Soft Nanoscience Letters, 2011, 01, 16-23.	0.8	38
65	Lithium Insertion in Channel-Structured β-AgVO ₃ : <i>In Situ</i> Raman Study and Computer Simulation. Chemistry of Materials, 2007, 19, 5965-5972.	3.2	37
66	Enhanced adsorption and visible-light-induced photocatalytic activity of hydroxyapatite modified Ag–TiO2 powders. Applied Surface Science, 2010, 256, 6390-6394.	3.1	37
67	Micro-arc oxidation of TC4 substrates to fabricate TiO2/YAG:Ce3+ compound films with enhanced photocatalytic activity. Journal of Alloys and Compounds, 2011, 509, L137-L141.	2.8	37
68	Diameter-controlled growth of TiO2 nanotube arrays by anodization and its photoelectric property. Journal of Alloys and Compounds, 2010, 492, L33-L35.	2.8	36
69	The production of nitrogen-doped graphene from mixed amine plus ethanol flames. Thin Solid Films, 2012, 520, 6850-6855.	0.8	36
70	<scp><scp>N</scp></scp> Â+Â <scp><scp>Ni</scp> Codoped Anatase <scp><iscp>TiO</iscp></scp></scp> ₂ Nanocrystals with Exposed {001} Facets Through Two‣tep Hydrothermal Route. Journal of the American Ceramic Society, 2012, 95, 2951-2956.	1.9	35
71	O ₂ Adsorption and Dissociation on A Hydrogenated Anatase (101) Surface. Journal of Physical Chemistry C, 2014, 118, 3471-3482.	1.5	34
72	Synthesis and enhanced microwave absorption properties: a strongly hydrogenated TiO ₂ nanomaterial. Nanotechnology, 2017, 28, 425701.	1.3	34

#	Article	IF	CITATIONS
73	Edge-riched graphene nanoribbon for high capacity electrode materials. Electrochimica Acta, 2017, 250, 84-90.	2.6	34
74	High Performance Polymer Thermoelectric Composite Achieved by Carbon-Coated Carbon Nanotubes Network. ACS Applied Energy Materials, 2019, 2, 2427-2434.	2.5	34
75	First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles. Applied Surface Science, 2012, 258, 8312-8318.	3.1	33
76	CNTs/TiO2 composites and its electrochemical properties after UV light irradiation. Progress in Natural Science: Materials International, 2013, 23, 164-169.	1.8	32
77	A novel route to ZnO/TiO ₂ heterojunction composite fibers. Journal of Materials Research, 2013, 28, 507-512.	1.2	32
78	Mechanical property enhancement of PVDF/graphene composite based on a high-quality graphene. Journal of Materials Science, 2014, 49, 8311-8316.	1.7	32
79	Bioinspired Single-Walled Carbon Nanotubes as a Spider Silk Structure for Ultrahigh Mechanical Property. ACS Applied Materials & Interfaces, 2016, 8, 31256-31263.	4.0	32
80	Preparation of Au nanoparticle-decorated ZnO/NiO heterostructure via nonsolvent method for high-performance photocatalysis. Journal of Materials Science, 2017, 52, 1285-1295.	1.7	32
81	Welding of Ti-6Al-4V alloy using dynamically controlled plasma arc welding process. Transactions of Nonferrous Metals Society of China, 2011, 21, 1506-1512.	1.7	31
82	Preparation of Cu-Graphene Composite Thin Foils via DC Electro-Deposition and Its Optimal Conditions for Highest Properties. Journal of the Electrochemical Society, 2017, 164, D652-D659.	1.3	31
83	A Wrinkled Ag/CNTs-PDMS Composite Film for a High-Performance Flexible Sensor and Its Applications in Human-Body Single Monitoring. Nanomaterials, 2019, 9, 850.	1.9	31
84	Mn3O4 embedded 3D multi-heteroatom codoped carbon sheets/carbon foams composites for high-performance flexible supercapacitors. Journal of Alloys and Compounds, 2020, 849, 156666.	2.8	31
85	Synergistic effect of Gr and CNTs on preparing ultrathin Cu-(CNTs+Gr) composite foil via electrodeposition. Composites Part B: Engineering, 2020, 187, 107841.	5.9	31
86	Near-ultraviolet light-emitting diodes realized from n-ZnO nanorod/p-GaN direct-bonding heterostructures. Journal of Luminescence, 2013, 137, 116-120.	1.5	30
87	Flexible photodetectors based on reticulated SWNT/perovskite quantum dot heterostructures with ultrahigh durability. Nanoscale, 2019, 11, 8020-8026.	2.8	30
88	Microstructural characteristics in plasma sprayed functionally graded ZrO2/NiCrAl coatings. Surface and Coatings Technology, 2003, 162, 194-201.	2.2	29
89	Electric-field-induced microstructural transformation of carbon nanotubes. Applied Physics Letters, 2006, 89, 063124.	1.5	29
90	Synthesis of carbon-modified TiO2 nanotube arrays for enhancing the photocatalytic activity under the visible light. Journal of Alloys and Compounds, 2010, 501, L8-L11.	2.8	29

#	Article	IF	CITATIONS
91	"In situ―preparation of a TiO2/Eu2O3 composite film upon Ti alloy substrate by micro-arc oxidation and its photo-catalytic property. Journal of Alloys and Compounds, 2012, 538, 16-20.	2.8	29
92	Synthesis of carbon nanotubes from ethanol flame. Journal of Materials Science Letters, 2002, 21, 1207-1209.	0.5	27
93	Well-aligned carbon nanotubes from ethanol flame. Journal of Materials Science Letters, 2002, 21, 1927-1929.	0.5	27
94	Influence of Graphene Oxide Content on the Zn-Gr Composite Layer Prepared by Pulse Reverse Electro-plating. Journal of the Electrochemical Society, 2018, 165, D501-D510.	1.3	27
95	A novel strategy to enhance the multiple interface effect using amorphous carbon packaged hydrogenated TiO ₂ for stable and effective microwave absorption. Journal of Materials Chemistry C, 2019, 7, 6152-6160.	2.7	27
96	"One-Step―Carbonization Activation of Garlic Seeds for Honeycomb-like Hierarchical Porous Carbon and Its High Supercapacitor Properties. ACS Omega, 2020, 5, 29913-29921.	1.6	26
97	Ultra-stretchable, super-hydrophobic and high-conductive composite for wearable strain sensors with high sensitivity. Journal of Colloid and Interface Science, 2022, 617, 372-382.	5.0	26
98	Fabrication and characterization of electrospun TiO2/CuS micro–nano-scaled composite fibers. Progress in Natural Science: Materials International, 2012, 22, 59-63.	1.8	25
99	Diamond synthesis from carbon nanofibers at low temperature and low pressure. Scientific Reports, 2015, 5, 13879.	1.6	25
100	A novel hollow flower-like 0D/3D Zn0.5Cd0.5S/NiCoZn-LDH photocatalyst with n-n heterojunction for high hydrogen production. Applied Surface Science, 2021, 564, 150379.	3.1	25
101	Improved and orange emission from an n-ZnO/p-Si heterojunction light emitting device with NiO as the intermediate layer. Applied Physics Letters, 2012, 101, .	1.5	24
102	Facile preparation of NiO nanoparticles anchored on N/P-codoped 3D carbon nanofibers network for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 888, 161488.	2.8	24
103	A Single-Step Process for Preparing Supercapacitor Electrodes from Carbon Nanotubes. Soft Nanoscience Letters, 2011, 01, 11-15.	0.8	24
104	Morphologies of Al4Sr Intermetallic Phase and Its Modification Property upon A356 Alloys. Journal of Materials Science and Technology, 2012, 28, 524-530.	5.6	23
105	Preparation of ZnO/graphene heterojunction via high temperature and its photocatalytic property. Journal of Materials Science, 2014, 49, 1854-1860.	1.7	23
106	Preparation of a ZnO/TiO2 vertical-nanoneedle-on-film heterojunction and its photocatalytic properties. RSC Advances, 2014, 4, 18186.	1.7	23
107	A high energy output nanogenerator based on reduced graphene oxide. Nanoscale, 2015, 7, 18147-18151.	2.8	23
108	Direct determination of graphene amount in electrochemical deposited Cu-based composite foil and its enhanced mechanical property. RSC Advances, 2017, 7, 1735-1742.	1.7	23

#	Article	IF	CITATIONS
109	Synthesis of one-dimensional ZnO nanoneedles using thermal oxidation process in the air and its application as filed emitters. Materials Letters, 2008, 62, 2783-2786.	1.3	22
110	Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings. IET Nanobiotechnology, 2010, 4, 10.	1.9	22
111	Effect of electric field on CuO nanoneedle growth during thermal oxidation and its growth mechanism. Journal of Applied Physics, 2010, 108, 024308.	1.1	22
112	Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism. Scientific Reports, 2015, 5, 9062.	1.6	22
113	Hydrothermal synthesis of the novel rutile-mixed anatase TiO ₂ nanosheets with dominant {001} facets for high photocatalytic activity. RSC Advances, 2016, 6, 84035-84041.	1.7	22
114	Construction of hierarchical TiO2 nanorod array/graphene/ZnO nanocomposites for high-performance photocatalysis. Journal of Materials Science, 2018, 53, 15376-15389.	1.7	22
115	The potential role of borophene as a radiosensitizer in boron neutron capture therapy (BNCT) and particle therapy (PT). Biomaterials Science, 2020, 8, 2778-2785.	2.6	22
116	Effect of surface microstructure of TiO2 film from micro-arc oxidation on its photocatalytic activity: a HRTEM study. Nanoscale, 2011, 3, 3573.	2.8	21
117	One-step construction of 3D N/P-codoped hierarchically porous carbon framework in-situ armored Mn3O4 nanoparticles for high-performance flexible supercapacitors. Electrochimica Acta, 2020, 333, 135496.	2.6	21
118	Recoverable Photoluminescence of Flame-Synthesized Multiwalled Carbon Nanotubes and Its Intensity Enhancement at 240 K. Journal of Physical Chemistry C, 2007, 111, 10347-10352.	1.5	20
119	Spark plasma sintering-fabricated one-dimensional nanoscale "crystalline-amorphous―carbon heterojunction. Applied Physics Letters, 2008, 92, 113113.	1.5	20
120	Magnetic-field-controlled Alignment of Carbon Nanotubes from Flames and Its Growth Mechanism. Journal of Physical Chemistry C, 2008, 112, 13470-13474.	1.5	20
121	Synthesis and photocatalytic activity of hydroxyapatite modified nitrogen-doped TiO2. Materials Chemistry and Physics, 2011, 129, 654-659.	2.0	20
122	Simulation for growth of multi-walled carbon nanotubes in electric field. Computational Materials Science, 2007, 39, 616-626.	1.4	19
123	Unusual electroluminescence from n-ZnO@i-MgO core–shell nanowire color-tunable light-emitting diode at reverse bias. Physical Chemistry Chemical Physics, 2014, 16, 9302-9308.	1.3	18
124	Effective photocatalytic properties of N doped Titanium dioxide nanotube arrays prepared by anodization. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106, 341-353.	0.8	17
125	Electron backscatter diffraction analysis on the microstructures of electrolytic Cu deposition in the through hole filling process. Thin Solid Films, 2013, 544, 412-418.	0.8	16
126	Strain induced chemical potential difference between monolayer graphene sheets. Nanoscale, 2013, 5, 2616.	2.8	16

#	Article	IF	CITATIONS
127	Carbon deposited TiO2-based nanosheets with enhanced adsorption ability and visible light photocatalytic activity. Journal of Molecular Catalysis A, 2014, 392, 208-215.	4.8	16
128	One-step synthesis of sandwich-type Cu/graphene/Cu ultrathin foil with enhanced property via electrochemical route. Materials and Design, 2020, 191, 108629.	3.3	16
129	Nitrogen-Doped Carbon Nanotubes from Amine Flames. Journal of Nanoscience and Nanotechnology, 2011, 11, 1060-1067.	0.9	15
130	A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field. Nanoscale, 2016, 8, 13017-13024.	2.8	15
131	Ag/graphene composite based on high-quality graphene with high electrical and mechanical properties. Progress in Natural Science: Materials International, 2019, 29, 384-389.	1.8	15
132	EBSD study of solidification characteristics of austenitic stainless steel weld pool. Materials Science and Technology, 2010, 26, 750-753.	0.8	14
133	Adsorption and diffusion studies of an O adatom on anatase surfaces with first principles calculations. Computational Materials Science, 2012, 63, 58-65.	1.4	14
134	Microstructure of Al4Sr Phase in Al-Sr Master Alloy and its Effect on Modification Properties. Procedia Engineering, 2012, 27, 805-814.	1.2	14
135	Modulated Structure Assisted Growth and Properties of Fe ₃ O ₄ Nanoneedle Films Using a Thermal Oxidation Process in the Air. Journal of Physical Chemistry C, 2008, 112, 902-910.	1.5	13
136	Modification performance on 4032 Al alloy by using Al–10Sr master alloys manufactured from different processes. Progress in Natural Science: Materials International, 2014, 24, 87-96.	1.8	13
137	Lattice distortion mechanism study of TiO2 nanoparticles during photocatalysis degradation and reactivation. AIP Advances, 2015, 5, .	0.6	13
138	O ₂ adsorption and dissociation on an anatase (101) surface with a subsurface Ti interstitial. Physical Chemistry Chemical Physics, 2016, 18, 4569-4576.	1.3	13
139	Effect of Hydrogen on O ₂ Adsorption and Dissociation on a TiO ₂ Anatase (001) Surface. ChemPhysChem, 2013, 14, 996-1002.	1.0	12
140	Nitrogen atom diffusion into TiO2 anatase bulk via surfaces. Computational Materials Science, 2014, 82, 107-113.	1.4	12
141	Formation of black patina on an ancient Chinese bronze sword of the Warring States Period. Applied Surface Science, 2018, 455, 724-728.	3.1	12
142	Formation of the deformation twinning in austenitic stainless steel weld metal. Journal of Materials Science Letters, 1995, 14, 1798-1800.	0.5	11
143	Graphene-Reinforced Zn–Ni Alloy Composite Coating on Iron Substrates by Pulsed Reverse Electrodeposition and Its High Corrosion Resistance. ACS Omega, 2021, 6, 13728-13741.	1.6	11
144	Synthesis and exchange bias effect of CoFe2O4/CoO composite ceramics. Materials Chemistry and Physics, 2010, 124, 1034-1038.	2.0	10

#	Article	IF	CITATIONS
145	Measurements of mechanical properties of α-phase in Cu–Sn alloys by using instrumented nanoindentation. Journal of Materials Research, 2012, 27, 192-196.	1.2	10
146	Preparation of Fe - Gr composite layer via DC electro-plating for high performances. Journal of Alloys and Compounds, 2018, 768, 859-865.	2.8	10
147	Graphitization of solid carbon nanofibers at an unexpectedly low temperature. Materials Letters, 2007, 61, 4272-4275.	1.3	9
148	Diameter-controlling growth of solid-cored carbon nanofibers on a pulse plated iron nanocrystalline substrate in flames. Materials Research Bulletin, 2008, 43, 3397-3407.	2.7	9
149	Specific corrosion product on interior surface of a bronze wine vessel with loop-handle and its growth mechanism, Shang Dynasty, China. Materials Characterization, 2012, 68, 88-93.	1.9	9
150	Research Progress on Ancient Bronze Corrosion in Different Environments and Using Different Conservation Techniques: A Review. MRS Advances, 2017, 2, 2033-2041.	0.5	9
151	Novel solid-cored carbon nanofiber grown on steels substrates in ethanol flames. Journal of Materials Science, 2005, 40, 1293-1295.	1.7	8
152	Interface Enhancement of Glass Fiber/Vinyl Ester Composites with Carbon Nanotubes Synthesized from Ethanol Flames. Journal of Nanoscience and Nanotechnology, 2010, 10, 948-955.	0.9	8
153	Micrometre scale residual stress measurement in fusion boundary of dissimilar steel welded joints using nanoindenter system. Materials Science and Technology, 2011, 27, 1453-1460.	0.8	8
154	Research Advances of Bio-Inspired Carbon Nanotubes-Based Sensors. MRS Advances, 2018, 3, 1-11.	0.5	8
155	Effect of Mortar-Pestle Grinding on Conductivity of Ferric Chloride Doped Polypyrrole. Key Engineering Materials, 2010, 428-429, 497-500.	0.4	7
156	Influence of hydroxyl groups on the adsorption of HCHO on TiO2-B(100) surface by first-principles study. Physical Chemistry Chemical Physics, 2013, 15, 3866.	1.3	7
157	Plasma Transferred Arc Surface Alloying of Cr-Ni-Mo Powders on Compacted Graphite Iron. Journal of Iron and Steel Research International, 2016, 23, 618-624.	1.4	7
158	One-Step Construction of Multi-Walled CNTs Loaded with Alpha-Fe2O3 Nanoparticles for Efficient Photocatalytic Properties. Materials, 2021, 14, 2820.	1.3	7
159	Effects of doping Na on the structure and physical properties of La2/3Ca1/3MnO3. Solid State Communications, 2007, 141, 471-473.	0.9	6
160	Enhanced Photoactivity of Fe + N Codoped Anatase-RutileTiO2Nanowire Film under Visible Light Irradiation. International Journal of Photoenergy, 2012, 2012, 1-8.	1.4	6
161	The role of F-dopants in adsorption of gases on anatase TiO2 (001) surface: a first-principles study. RSC Advances, 2014, 4, 35928-35942.	1.7	6
162	NiFe-LDH@ZnO@NF composite for photo-degradation of Rhodamine B dye. MRS Advances, 2019, 4, 1887-1893.	0.5	6

#	Article	IF	CITATIONS
163	Bio-inspired (GOÂ+ÂCNTs)-PU hydrophobic coating via replication of Lotus leaf and its enhanced mechanical and anti-corrosion properties. Progress in Organic Coatings, 2021, 159, 106414.	1.9	6
164	Synthesis of polyaniline-Fe3O4 nanocomposites and their conductivity and magnetic properties. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 760-764.	0.4	5
165	Conductivity and Thermal-Stability of 5-Sulfosalicylic Acid Sodium Doped Polypyrrole. Key Engineering Materials, 0, 428-429, 579-582.	0.4	5
166	Hole distribution in nitrogenâ€doped TiO ₂ anatase nanoparticles. Physica Status Solidi (B): Basic Research, 2011, 248, 1665-1670.	0.7	5
167	High-voltage electric-field-induced growth of aligned "cow-nipple-like―submicro-nano carbon isomeric structure via chemical vapor deposition. Journal of Applied Physics, 2012, 112, 114310.	1.1	5
168	Influences of Mutations on the Electrostatic Binding Free Energies of Chloride Ions in <i>Escherichia coli</i> ClC. Journal of Physical Chemistry B, 2012, 116, 6431-6438.	1.2	5
169	Microarc Oxidation. , 2015, , 257-276.		5
170	Preparation of Metal Nanoparticle Decorated Graphene Hybrid Composites: A Review. MRS Advances, 2018, 3, 849-854.	0.5	5
171	Preparation of high-concentration substitutional carbon-doped TiO ₂ film <i>via</i> a two-step method for high-performance photocatalysis. RSC Advances, 2018, 8, 36691-36696.	1.7	5
172	Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis. Frontiers of Materials Science, 2018, 12, 379-391.	1.1	5
173	Scalable Production of Boron Quantum Dots for Broadband Ultrafast Nonlinear Optical Performance. Nanomaterials, 2021, 11, 687.	1.9	5
174	Techniques employed in making ancient thin-walled bronze vessels unearthed in Hubei Province, China. Applied Physics A: Materials Science and Processing, 2013, 111, 913-922.	1.1	4
175	Functionalized Graphene for Mechanical Property Enhancement of Polymer Composites. Journal of Nanoscience and Nanotechnology, 2018, 18, 7203-7206.	0.9	4
176	TiO ₂ /graphene/CuSbS ₂ mixed-dimensional array with high-performance photoelectrochemical properties. RSC Advances, 2019, 9, 33747-33754.	1.7	4
177	Magnetoresistance plateau in La2/3Ca1/3Bi x Mn1 â~' x O3 granular system. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 61-64.	0.4	3
178	Effects of Dopant 5-Sulfosalicylic Acid on Conductivity of Ferric Chloride Oxidized Polypyrrole. Materials Science Forum, 0, 663-665, 682-685.	0.3	3
179	Organic Photovoltaic Cells Prepared with Toluene Sulfonic Acid Doped Polypyrrole. Key Engineering Materials, 0, 428-429, 450-453.	0.4	3
180	Manufacturing techniques of armor strips excavated from Emperor Qin Shi Huang's mausoleum, China. Transactions of Nonferrous Metals Society of China, 2010, 20, 395-399.	1.7	3

#	Article	IF	CITATIONS
181	Relationships between microstructures and properties of chinese ancient bronzes. Wuhan University Journal of Natural Sciences, 2013, 18, 226-232.	0.2	3
182	Copper-Graphene Composite Foils via Electro-Deposition: A Mini Review. MRS Advances, 2018, 3, 37-44.	0.5	3
183	Study on manufacturing process of ancient Chinese bi-metallic bronze Ge. Archaeological and Anthropological Sciences, 2020, 12, 1.	0.7	3
184	<i>In Situ</i> Preparation of TiO ₂ Composite Layer upon Ti Alloy Substrate Using Micro-Arc Oxidation and its Photocatalytic Property. Materials Science Forum, 0, 663-665, 3-11.	0.3	2
185	Electric-field-induced diameter control of carbon nanofibers. Journal of Alloys and Compounds, 2010, 495, 93-96.	2.8	2
186	Size-Dependent Conductivity of Polypyrrole Doped with Anthraquinone-2-Sulfonic Acid Sodium. Key Engineering Materials, 2010, 428-429, 548-551.	0.4	2
187	The ripple's enhancement in graphene sheets by spark plasma sintering. AIP Advances, 2011, 1, 032170.	0.6	2
188	Carbon Nanomaterials for Applications on Supercapacitors. MRS Advances, 2017, 2, 3283-3289.	0.5	2
189	Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies. Frontiers of Materials Science, 2017, 11, 358-365.	1.1	2
190	Positron Annihilation Study of High-Temperature Oxidation Behavior of Zr–1Nb Alloy. Oxidation of Metals, 2018, 90, 657-669.	1.0	2
191	Spontaneous Symmetry-Breaking in the Corrosion Transformation of Ancient Bronzes. Minerals (Basel, Switzerland), 2020, 10, 656.	0.8	2
192	Correction: The potential role of borophene as a radiosensitizer in boron neutron capture therapy (BNCT) and particle therapy (PT). Biomaterials Science, 2021, 9, 2743-2744.	2.6	2
193	Effect of metal's inherent characteristics on sensibility of flexible metal-based composite sensor and its applications. Sensors and Actuators A: Physical, 2021, 327, 112754.	2.0	2
194	Research Progress on Nanogenerators Based on Nanomaterials and Nanostructures. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2014, 29, 897.	0.6	2
195	Inexpensive and Abundant Layered Co-Based Composite Photocatalysts for Hydrogen Production and Theoretical Calculations. ACS Applied Energy Materials, 2021, 4, 14034-14042.	2.5	2
196	A Special Ancient Bronze Sword and Its Possible Manufacturing Technique from Materials Science Analysis. Materials, 2022, 15, 2491.	1.3	2
197	Effects of Phosphoric Acid on the Photovoltaic Properties of Photovoltaic Cells with Laminated Polypyrrole-Fullerene Layers. Materials Science Forum, 0, 663-665, 861-864.	0.3	1
198	Controlled Growth of 1-D Nanomaterials Base on Electro-Deposited Nanocrystalline Films: A Overview. Materials Science Forum, 2010, 654-656, 1126-1129.	0.3	1

#	Article	IF	CITATIONS
199	Comparison in structural stability between chain A and B of CLC-ec1 exchanger by using MD simulation. , 2011, , .		1
200	Graphene-based Nanogenerator: Experiments, Theories and Applications. Materials Research Society Symposia Proceedings, 2015, 1782, 15-21.	0.1	1
201	Dark photovoltaic effects of Ti-rooted TiO ₂ nanopillars as the anode in CdSe-sensitised solar cell. Materials Research Innovations, 2015, 19, s25-s29.	1.0	1
202	Carbon Nanomaterials in Flames: from 0-D to 1-D and 2-D. MRS Advances, 2016, 1, 1313-1325.	0.5	1
203	Preparation of TiO ₂ oated Mo Powders for High Photocatalytic Property. Journal of the American Ceramic Society, 2016, 99, 79-83.	1.9	1
204	From 2-D Nanocrystalline Films to 1-D Nanomaterials: An Overview. MRS Advances, 2018, 3, 803-816.	0.5	1
205	NiCo2O4 bricks as anode materials with high lithium storage property. MRS Advances, 2019, 4, 1861-1868.	0.5	1
206	"Inward Growth―Corrosion and Its Growth Mechanism in Ancient Chinese Bronzes. MRS Advances, 2020, 5, 1457-1466.	0.5	1
207	Synthesis of Nano-/Microsized KHCO3 Fibers via Quick Thermal Process and Its Toughness and Electron-Irradiating Degradation. Journal of Physical Chemistry C, 2009, 113, 19439-19444.	1.5	0
208	Effect of C ₆₀ on the Photovoltaic Properties of Polypyrrole-C ₆₀ Heterojunctions. Materials Science Forum, 0, 663-665, 828-831.	0.3	0
209	Relationship between Dopant 5-Sulfosalicylic Acid and Conductivity of Ammonium Persulfate Oxidized Polypyrrole. Materials Science Forum, 0, 663-665, 674-677.	0.3	0
210	Technique for Producing High Effective, Fast Modification and High Sr Content Al-Sr20 Master Alloy and its Application. Advanced Materials Research, 2011, 396-398, 2361-2365.	0.3	0
211	Pristine Functionalized Carbon Nanotubes from Ethanol Flame as a Reinforcement in Polystyrene Composite. Advanced Materials Research, 2011, 266, 184-187.	0.3	0
212	High Visible Response of Vertical TiO2 Nanoclusters-CdSe Linked by Cysteine. Asian Journal of Chemistry, 2014, 26, 5557-5562.	0.1	0
213	Photo-Anodic Polymerization of Pyrrole on Nanoclustered Tio ₂ from Hydrothermal One-Step on Pure Ti. Polymers and Polymer Composites, 2014, 22, 729-736.	1.0	0
214	Magnetic Field-assisted Preparations for 1-D Carbon Nanomaterials: A Review. Materials Research Society Symposia Proceedings, 2015, 1786, 43-49.	0.1	0
215	A Physical Route to High Performance Heterojunction Composites: Experiments, Mechanism and Applications. MRS Advances, 2016, 1, 441-446.	0.5	0
216	Selective Growth of Semiconducting Single-Walled Carbon Nanotubes by "In Situ―Methods. MRS Advances, 2017, 2, 109-116.	0.5	0

#	Article	IF	CITATIONS
217	Direct Fractographic Evaluation of Multilayer CNx/TiN Films by Magnetron Sputtering. MRS Advances, 2018, 3, 949-955.	0.5	0
218	Preparation of Metal-Gr Composite Coatings via Electro-Plating for High Performances: A Review. MRS Advances, 2019, 4, 1913-1928.	0.5	0
219	Preparation of Gr-Reinforced Cu Foil: A Challenge to Ultrathin Thickness. ECS Meeting Abstracts, 2021, MA2021-01, 651-651.	0.0	0
220	Preparation of Metal-Gr Composite Coatings Via Electro-Plating for High Corrosion Resistances. ECS Meeting Abstracts, 2019, , .	0.0	0