Zhaowei Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1920083/zhaowei-chen-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

5,697 42 94 74 h-index g-index citations papers 6.13 6,934 12.4 95 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
94	A multifunctional platinum(IV) and cyanine dye-based polyprodrug for trimodal imaging-guided chemo-phototherapy <i>Journal of Materials Chemistry B</i> , 2022 ,	7-3	3
93	Bioorthogonal catalysis for biomedical applications. <i>Trends in Chemistry</i> , 2022 , 4, 157-168	14.8	2
92	Scattered seeding of CAR T cells in solid tumors augments anticancer efficacy <i>National Science Review</i> , 2022 , 9, nwab172	10.8	9
91	Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing <i>Biomaterials</i> , 2022 , 285, 121479	15.6	6
90	Cellular transformers for targeted therapy. Advanced Drug Delivery Reviews, 2021, 179, 114032	18.5	3
89	Roadmap on nanomedicine. <i>Nanotechnology</i> , 2021 , 32, 012001	3.4	5
88	Cytosolic Delivery of Thiolated Mn-cGAMP Nanovaccine to Enhance the Antitumor Immune Responses. <i>Small</i> , 2021 , 17, e2006970	11	8
87	Gaseous Plastron on Natural and Biomimetic Surfaces for Resisting Marine Biofouling. <i>Molecules</i> , 2021 , 26,	4.8	4
86	Bioorthogonal catalytic patch. <i>Nature Nanotechnology</i> , 2021 , 16, 933-941	28.7	30
85	Adipocyte-Derived Anticancer Lipid Droplets. Advanced Materials, 2021, 33, e2100629	24	7
84	Disrupting tumour vasculature and recruitment of aPDL1-loaded platelets control tumour metastasis. <i>Nature Communications</i> , 2021 , 12, 2773	17.4	13
83	pH and Reduction Dual-Responsive Bi-Drugs Conjugated Dextran Assemblies for Combination Chemotherapy and In Vitro Evaluation. <i>Polymers</i> , 2021 , 13,	4.5	3
82	Photogenerated Holes Mediated Nitric Oxide Production for Hypoxic Tumor Treatment. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7046-7050	16.4	31
81	Nanotechnology lights up the antitumor potency by combining chemotherapy with siRNA. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 7302-7317	7:3	5
80	Photogenerated Holes Mediated Nitric Oxide Production for Hypoxic Tumor Treatment. <i>Angewandte Chemie</i> , 2021 , 133, 7122-7126	3.6	3
79	Engineered Nanoscale Vanadium Metallodrugs for Robust Tumor-Specific Imaging and Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2010337	15.6	11
78	Topographical nanostructures for physical sterilization. <i>Drug Delivery and Translational Research</i> , 2021 , 11, 1376-1389	6.2	5

77	Wireless Optogenetic Modulation of Cortical Neurons Enabled by Radioluminescent Nanoparticles. <i>ACS Nano</i> , 2021 , 15, 5201-5208	16.7	7
76	Cancer Therapy: Adipocyte-Derived Anticancer Lipid Droplets (Adv. Mater. 26/2021). <i>Advanced Materials</i> , 2021 , 33, 2170198	24	
75	An Amphiphilic Carbonaceous/Nanosilver Composite-Incorporated Urinary Catheter for Long-Term Combating Bacteria and Biofilms. <i>ACS Applied Materials & District Materials & Distr</i>	9.5	3
74	Multistage Cooperative Nanodrug Combined with PD-L1 for Enhancing Antitumor Chemoimmunotherapy. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2101199	10.1	3
73	Localized DNA catalytic hairpin assembly reaction on DNA origami for tumor-associated microRNA detection and imaging in live cells. <i>Sensors and Actuators B: Chemical</i> , 2021 , 344, 130195	8.5	5
72	Cargo-encapsulated cells for drug delivery. Science China Life Sciences, 2020, 63, 599-601	8.5	12
71	Transdermal colorimetric patch for hyperglycemia sensing in diabetic mice. <i>Biomaterials</i> , 2020 , 237, 119	71852 6	32
70	Synthesis Characterization of Platinum (IV) Complex Curcumin Backboned Polyprodrugs: In Vitro Drug Release Anticancer Activity. <i>Polymers</i> , 2020 , 13,	4.5	6
69	Ferric tannate photothermal material for efficient water distillation. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 911-915	4.2	20
68	Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics. <i>Accounts of Chemical Research</i> , 2020 , 53, 2521-2533	24.3	29
67	Light-Gated Synthetic Protocells for Plasmon-Enhanced Chemiosmotic Gradient Generation and ATP Synthesis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4896-4900	16.4	25
66	Water Treatment: Porphyrin Covalent Organic Framework (POF)-Based Interface Engineering for Solar Steam Generation (Adv. Mater. Interfaces 11/2019). <i>Advanced Materials Interfaces</i> , 2019 , 6, 197007	12 ^{.6}	5
65	Porphyrin Covalent Organic Framework (POF)-Based Interface Engineering for Solar Steam Generation. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900254	4.6	59
64	Bioinspired and Biomimetic Nanomedicines. <i>Accounts of Chemical Research</i> , 2019 , 52, 1255-1264	24.3	8o
63	A Therapeutic Microneedle Patch Made from Hair-Derived Keratin for Promoting Hair Regrowth. <i>ACS Nano</i> , 2019 , 13, 4354-4360	16.7	88
62	Light-Gated Synthetic Protocells for Plasmon-Enhanced Chemiosmotic Gradient Generation and ATP Synthesis. <i>Angewandte Chemie</i> , 2019 , 131, 4950-4954	3.6	8
61	Energy Transfer Induced by Dye Encapsulation in a Hybrid Nanoparticle-Purple Membrane Reversible Assembly. <i>Advanced Functional Materials</i> , 2019 , 29, 1904899	15.6	5
60	Semi-artificial Photosynthetic CO Reduction through Purple Membrane Re-engineering with Semiconductor. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11811-11815	16.4	26

59	Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. <i>Science Advances</i> , 2019 , 5, eaaw4357	14.3	62
58	In situ fabrication of organic electrochemical transistors on a microfluidic chip. <i>Nano Research</i> , 2019 , 12, 1943-1951	10	12
57	Advances in nanomedicine for cancer starvation therapy. <i>Theranostics</i> , 2019 , 9, 8026-8047	12.1	73
56	Chinese Ink: A Powerful Photothermal Material for Solar Steam Generation. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801252	4.6	74
55	Solar Steam: Chinese Ink: A Powerful Photothermal Material for Solar Steam Generation (Adv. Mater. Interfaces 1/2019). <i>Advanced Materials Interfaces</i> , 2019 , 6, 1970002	4.6	10
54	Enzyme Mimicry for Combating Bacteria and Biofilms. <i>Accounts of Chemical Research</i> , 2018 , 51, 789-799	24.3	216
53	DNA metallization: principles, methods, structures, and applications. <i>Chemical Society Reviews</i> , 2018 , 47, 4017-4072	58.5	108
52	Core-Shell Microneedle Gel for Self-Regulated Insulin Delivery. <i>ACS Nano</i> , 2018 , 12, 2466-2473	16.7	132
51	Leveraging Engineering of Cells for Drug Delivery. Accounts of Chemical Research, 2018, 51, 668-677	24.3	77
50	Synthetic beta cells for fusion-mediated dynamic insulin secretion. <i>Nature Chemical Biology</i> , 2018 , 14, 86-93	11.7	110
49	Engineering PD-1-Presenting Platelets for Cancer Immunotherapy. <i>Nano Letters</i> , 2018 , 18, 5716-5725	11.5	113
48	Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. <i>Nature Communications</i> , 2018 , 9, 3334	17.4	308
47	Atomic layer deposition for membrane interface engineering. <i>Nanoscale</i> , 2018 , 10, 20505-20513	7.7	53
46	Graphitic carbon nitride nanosheets as a multifunctional nanoplatform for photochemical internalization-enhanced photodynamic therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 7908-7915	7.3	22
45	Intracellular gold nanoclusters boost energy conversion. <i>Nature Nanotechnology</i> , 2018 , 13, 880-881	28.7	12
44	Iono-Elastomer-Based Wearable Strain Sensor with Real-Time Thermomechanical Dual Response. <i>ACS Applied Materials & Dual Response</i> , 2018, 10, 32435-32443	9.5	21
43	An intelligent near-infrared light activatable nanosystem for accurate regulation of zinc signaling in living cells. <i>Nano Research</i> , 2017 , 10, 3068-3076	10	7
42	A NIR-controlled cage mimicking system for hydrophobic drug mediated cancer therapy. <i>Biomaterials</i> , 2017 , 139, 151-162	15.6	72

41	Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer. <i>Nano Letters</i> , 2017 , 17, 2138-2	1 45 .5	109
40	KO of 5-InsP kinase activity transforms the HCT116 colon cancer cell line into a hypermetabolic, growth-inhibited phenotype. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 11968-11973	11.5	39
39	Confinement of Reactive Oxygen Species in an Artificial-Enzyme-Based Hollow Structure To Eliminate Adverse Effects of Photocatalysis on UV Filters. <i>Chemistry - A European Journal</i> , 2017 , 23, 135	1 8 -135	5 <mark>2</mark> 4
38	Investigation and intervention of autophagy to guide cancer treatment with nanogels. <i>Nanoscale</i> , 2017 , 9, 150-163	7.7	27
37	Activation of biologically relevant levels of reactive oxygen species by Au/g-CN hybrid nanozyme for bacteria killing and wound disinfection. <i>Biomaterials</i> , 2017 , 113, 145-157	15.6	234
36	Engineered Nanoplatelets for Enhanced Treatment of Multiple Myeloma and Thrombus. <i>Advanced Materials</i> , 2016 , 28, 9573-9580	24	147
35	Metal-Organic-Framework-Based Vaccine Platforms for Enhanced Systemic Immune and Memory Response. <i>Advanced Functional Materials</i> , 2016 , 26, 6454-6461	15.6	152
34	Platinum-coordinated graphitic carbon nitride nanosheet used for targeted inhibition of amyloid Epeptide aggregation. <i>Nano Research</i> , 2016 , 9, 2411-2423	10	28
33	Bioorthogonal chemistry for selective recognition, separation and killing bacteria over mammalian cells. <i>Chemical Communications</i> , 2016 , 52, 3482-5	5.8	4
32	A graphitic hollow carbon nitride nanosphere as a novel photochemical internalization agent for targeted and stimuli-responsive cancer therapy. <i>Nanoscale</i> , 2016 , 8, 12570-8	7.7	71
31	Design of Surface-Active Artificial Enzyme Particles to Stabilize Pickering Emulsions for High-Performance Biphasic Biocatalysis. <i>Advanced Materials</i> , 2016 , 28, 1682-8	24	105
30	An ultrathin graphitic carbon nitride nanosheet: a novel inhibitor of metal-induced amyloid aggregation associated with Alzheimer disease. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 4072-4075	7.3	23
29	Bacterial Hyaluronidase Self-Triggered Prodrug Release for Chemo-Photothermal Synergistic Treatment of Bacterial Infection. <i>Small</i> , 2016 , 12, 6200-6206	11	150
28	Embedding magnetic nanoparticles into coordination polymers to mimic zinc ion transporters for targeted tumor therapy. <i>Chemical Communications</i> , 2016 , 52, 12598-12601	5.8	9
27	A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10732-6	16.4	134
26	A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms. <i>Angewandte Chemie</i> , 2016 , 128, 10890-10894	3.6	24
25	Copper(II) Carbon Nitride Triggered Synergy: Improved ROS Generation and Reduced Glutathione Levels for Enhanced Photodynamic Therapy. <i>Angewandte Chemie</i> , 2016 , 128, 11639-11643	3.6	79
24	Copper(II)-Graphitic Carbon Nitride Triggered Synergy: Improved ROS Generation and Reduced Glutathione Levels for Enhanced Photodynamic Therapy. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11467-71	16.4	282

23	Individual surface-engineered microorganisms as robust Pickering interfacial biocatalysts for resistance-minimized phase-transfer bioconversion. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4904-8	16.4	86
22	Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. <i>Nano Research</i> , 2015 , 8, 1648-1658	10	155
21	Growth of hydrophilic CuS nanowires via DNA-mediated self-assembly process and their use in fabricating smart hybrid films for adjustable chemical release. <i>Chemistry - A European Journal</i> , 2015 , 21, 2930-5	4.8	7
20	Biomimetic nanoassembly for targeted antigen delivery and enhanced Th1-type immune response. <i>Chemical Communications</i> , 2015 , 51, 15975-8	5.8	12
19	Recent advances in bioapplications of C-dots. <i>Carbon</i> , 2015 , 85, 309-327	10.4	280
18	Upconversion nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis. <i>Biomaterials</i> , 2015 , 39, 15-22	15.6	86
17	Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy. <i>Carbon</i> , 2015 , 82, 479-488	10.4	74
16	Individual Surface-Engineered Microorganisms as Robust Pickering Interfacial Biocatalysts for Resistance-Minimized Phase-Transfer Bioconversion. <i>Angewandte Chemie</i> , 2015 , 127, 4986-4990	3.6	20
15	Transmutation of Personal Glucose Meters into Portable and Highly Sensitive Microbial Pathogen Detection Platform. <i>Small</i> , 2015 , 11, 4970-5	11	44
14	Hybridization chain reaction engineered dsDNA for Cu metallization: an enzyme-free platform for amplified detection of cancer cells and microRNAs. <i>Chemical Communications</i> , 2015 , 51, 11496-9	5.8	62
13	Noninvasive and Reversible Cell Adhesion and Detachment via Single-Wavelength Near-Infrared Laser Mediated Photoisomerization. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8199-205	16.4	91
12	Ionic liquid-assisted synthesis of multicolor luminescent silica nanodots and their use as anticounterfeiting ink. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 2905-11	9.5	23
11	DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release. <i>Advanced Materials</i> , 2014 , 26, 2424-30	24	99
10	DNA-mediated biomineralization of rare-earth nanoparticles for simultaneous imaging and stimuli-responsive drug delivery. <i>Biomaterials</i> , 2014 , 35, 8694-702	15.6	43
9	A multi-stimuli responsive gold nanocage-hyaluronic platform for targeted photothermal and chemotherapy. <i>Biomaterials</i> , 2014 , 35, 9678-88	15.6	149
8	Upconverting nanoparticles with a mesoporous TiOIshell for near-infrared-triggered drug delivery and synergistic targeted cancer therapy. <i>Chemistry - A European Journal</i> , 2014 , 20, 14012-7	4.8	72
7	Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7498-504	16.4	190
6	A Multi-synergistic Platform for Sequential Irradiation-Activated High-Performance Apoptotic Cancer Therapy. <i>Advanced Functional Materials</i> , 2014 , 24, 522-529	15.6	72

LIST OF PUBLICATIONS

5	Coupling exonuclease III with DNA metallization for amplified detection of biothiols at picomolar concentration. <i>Biosensors and Bioelectronics</i> , 2014 , 58, 214-8	11.8	10
4	Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. <i>Biomaterials</i> , 2013 , 34, 1364-71	15.6	104
3	Bioresponsive hyaluronic acid-capped mesoporous silica nanoparticles for targeted drug delivery. <i>Chemistry - A European Journal</i> , 2013 , 19, 1778-83	4.8	132
2	Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. <i>Biomaterials</i> , 2013 , 34, 2600-10	15.6	177
1	Silver metallization engineered conformational switch of G-quadruplex for fluorescence turn-on detection of biothiols. <i>Chemical Communications</i> , 2012 , 48, 11428-30	5.8	34