Gabe Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1920038/publications.pdf Version: 2024-02-01

CARE NACY

#	Article	IF	CITATIONS
1	Recent Advances in the Analysis of Complex Glycoproteins. Analytical Chemistry, 2017, 89, 389-413.	6.5	106
2	SLIM Ultrahigh Resolution Ion Mobility Spectrometry Separations of Isotopologues and Isotopomers Reveal Mobility Shifts due to Mass Distribution Changes. Analytical Chemistry, 2019, 91, 11952-11962.	6.5	76
3	Unraveling the isomeric heterogeneity of glycans: ion mobility separations in structures for lossless ion manipulations. Chemical Communications, 2018, 54, 11701-11704.	4.1	68
4	New mass spectrometry technologies contributing towards comprehensive and high throughput omics analyses of single cells. Analyst, The, 2019, 144, 794-807.	3.5	67
5	Multidimensional Analysis of 16 Glucose Isomers by Ion Mobility Spectrometry. Analytical Chemistry, 2016, 88, 2335-2344.	6.5	65
6	Complete Hexose Isomer Identification with Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2015, 26, 677-685.	2.8	55
7	Ultra-High-Resolution Ion Mobility Separations Over Extended Path Lengths and Mobility Ranges Achieved using a Multilevel Structures for Lossless Ion Manipulations Module. Analytical Chemistry, 2020, 92, 7972-7979.	6.5	48
8	Recent liquid chromatographic approaches and developments for the separation and purification of carbohydrates. Analytical Methods, 2017, 9, 3579-3593.	2.7	47
9	Monosaccharide Identification as a First Step toward <i>de Novo</i> Carbohydrate Sequencing: Mass Spectrometry Strategy for the Identification and Differentiation of Diastereomeric and Enantiomeric Pentose Isomers. Analytical Chemistry, 2015, 87, 4566-4571.	6.5	46
10	Rapid Ion Mobility Separations of Bile Acid Isomers Using Cyclodextrin Adducts and Structures for Lossless Ion Manipulations. Analytical Chemistry, 2018, 90, 11086-11091.	6.5	44
11	Improved Sensitivity and Separations for Phosphopeptides using Online Liquid Chromotography Coupled with Structures for Lossless Ion Manipulations Ion Mobility–Mass Spectrometry. Analytical Chemistry, 2018, 90, 10889-10896.	6.5	38
12	Separation of β-Amyloid Tryptic Peptide Species with Isomerized and Racemized <scp>l</scp> -Aspartic Residues with Ion Mobility in Structures for Lossless Ion Manipulations. Analytical Chemistry, 2019, 91, 4374-4380.	6.5	37
13	Distinguishing enantiomeric amino acids with chiral cyclodextrin adducts and structures for lossless ion manipulations. Electrophoresis, 2018, 39, 3148-3155.	2.4	35
14	Protocol for the purification of protected carbohydrates: toward coupling automated synthesis to alternate-pump recycling high-performance liquid chromatography. Chemical Communications, 2016, 52, 13253-13256.	4.1	29
15	Identification and deconvolution of carbohydrates with gas chromatography-vacuum ultraviolet spectroscopy. Journal of Chromatography A, 2017, 1513, 210-221.	3.7	29
16	Opening new paths for biological applications of ion mobility - Mass spectrometry using structures for lossless ion manipulations. TrAC - Trends in Analytical Chemistry, 2019, 116, 300-307.	11.4	28
17	Toward Sequencing the Human Milk Glycome: High-Resolution Cyclic Ion Mobility Separations of Core Human Milk Oligosaccharide Building Blocks. Analytical Chemistry, 2021, 93, 9397-9407.	6.5	28
18	Towards resolving the spatial metabolome with unambiguous molecular annotations in complex biological systems by coupling mass spectrometry imaging with structures for lossless ion manipulations. Chemical Communications, 2019, 55, 306-309.	4.1	27

GABE NAGY

#	Article	IF	CITATIONS
19	Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations. Analytical Chemistry, 2020, 92, 14976-14982.	6.5	23
20	Rapid and Simultaneous Characterization of Drug Conjugation in Heavy and Light Chains of a Monoclonal Antibody Revealed by High-Resolution Ion Mobility Separations in SLIM. Analytical Chemistry, 2020, 92, 5004-5012.	6.5	21
21	Investigating the Structure of α/β Carbohydrate Linkage Isomers as a Function of Group I Metal Adduction and Degree of Polymerization as Revealed by Cyclic Ion Mobility Separations. Journal of the American Society for Mass Spectrometry, 2021, 32, 2573-2582.	2.8	18
22	lon Mobility-Mass Spectrometry in Metabolomic, Lipidomic, and Proteomic Analyses. Comprehensive Analytical Chemistry, 2019, , 123-159.	1.3	15
23	Measurement and Theory of Gas-Phase Ion Mobility Shifts Resulting from Isotopomer Mass Distribution Changes. Analytical Chemistry, 2021, 93, 14966-14975.	6.5	15
24	Dynamic Time-Warping Correction for Shifts in Ultrahigh Resolving Power Ion Mobility Spectrometry and Structures for Lossless Ion Manipulations. Journal of the American Society for Mass Spectrometry, 2021, 32, 996-1007.	2.8	14
25	Nanowell-mediated multidimensional separations combining nanoLC with SLIM IM-MS for rapid, high-peak-capacity proteomic analyses. Analytical and Bioanalytical Chemistry, 2019, 411, 5363-5372.	3.7	13
26	General Label-Free Mass Spectrometry-Based Assay To Identify Glycosidase Substrate Competence. Analytical Chemistry, 2016, 88, 7183-7190.	6.5	12
27	Ion Mobility Spectrometry with High Ion Utilization Efficiency Using Traveling Wave-Based Structures for Lossless Ion Manipulations. Analytical Chemistry, 2020, 92, 14930-14938.	6.5	12
28	Experimental Measurements of Relative Mobility Shifts Resulting from Isotopic Substitutions with High-Resolution Cyclic Ion Mobility Separations. Analytical Chemistry, 2022, 94, 2988-2995.	6.5	11
29	Development of a Post-Column Liquid Chromatographic Chiral Addition Method for the Separation and Resolution of Common Mammalian Monosaccharides. Journal of the American Society for Mass Spectrometry, 2019, 30, 419-425.	2.8	9
30	A Highâ€Throughput Massâ€Spectrometryâ€Based Assay for Identifying the Biochemical Functions of Putative Glycosidases. ChemBioChem, 2017, 18, 2306-2311.	2.6	7
31	Traveling-Wave-Based Electrodynamic Switch for Concurrent Dual-Polarity Ion Manipulations in Structures for Lossless Ion Manipulations. Analytical Chemistry, 2019, 91, 14712-14718.	6.5	7
32	Dual Polarity Ion Confinement and Mobility Separations. Journal of the American Society for Mass Spectrometry, 2019, 30, 967-976.	2.8	5
33	Evaluation of Waveform Profiles for Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations. Journal of the American Society for Mass Spectrometry, 2021, 32, 225-236.	2.8	5
34	Evaluating the Utility of Temporal Compression in High-Resolution Traveling Wave-Based Cyclic Ion Mobility Separations. ACS Measurement Science Au, 2022, 2, 361-369.	4.4	5
35	Rapid cyclic ion mobility separations of monosaccharide building blocks as a first step toward a high-throughput reaction screening platform for carbohydrate syntheses. RSC Advances, 2021, 11, 39742-39747.	3.6	3
36	Implementation of Ion Mobility Spectrometry-Based Separations in Structures for Lossless Ion Manipulations (SLIM). Methods in Molecular Biology, 2022, 2394, 453-469.	0.9	2