
Kenichiro Ishii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1919776/publications.pdf Version: 2024-02-01

KENICHIDO ISHII

#	Article	IF	CITATIONS
1	Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial cell maturation. Development (Cambridge), 2005, 132, 3431-3443.	2.5	157
2	Aminopeptidase N regulated by zinc in human prostate participates in tumor cell invasion. International Journal of Cancer, 2001, 92, 49-54.	5.1	122
3	NE-10 Neuroendocrine Cancer Promotes the LNCaP Xenograft Growth in Castrated Mice. Cancer Research, 2004, 64, 5489-5495.	0.9	105
4	Steroid hormones stimulate human prostate cancer progression and metastasis. International Journal of Cancer, 2006, 118, 2123-2131.	5.1	81
5	Endocrine Disrupter Bisphenol A Increases In Situ Estrogen Production in the Mouse Urogenital Sinus. Biology of Reproduction, 2011, 84, 734-742.	2.7	78
6	Unopposed c-MYC expression in benign prostatic epithelium causes a cancer phenotype. Prostate, 2005, 63, 369-384.	2.3	64
7	Inhibition of Aminopeptidase N (AP-N) and Urokinase-Type Plasminogen Activator (uPA) by Zinc Suppresses the Invasion Activity in Human Urological Cancer Cells Biological and Pharmaceutical Bulletin, 2001, 24, 226-230.	1.4	59
8	Evidence that the prostate-specific antigen (PSA)/Zn2+ axis may play a role in human prostate cancer cell invasion. Cancer Letters, 2004, 207, 79-87.	7.2	59
9	Naftopidil, a selective αâ€1 adrenoceptor antagonist, inhibits growth of human prostate cancer cells by G1 cell cycle arrest. International Journal of Cancer, 2008, 122, 444-451.	5.1	59
10	Naftopidil, a Selective α1-Adrenoceptor Antagonist, Suppresses Human Prostate Tumor Growth by Altering Interactions between Tumor Cells and Stroma. Cancer Prevention Research, 2011, 4, 87-96.	1.5	48
11	Endodermal Origin of Bladder Trigone Inferred From Mesenchymal-Epithelial Interaction. Journal of Urology, 2010, 183, 386-391.	0.4	39
12	Urothelial transdifferentiation to prostate epithelia is mediated by paracrine TGF-β signaling. Differentiation, 2009, 77, 95-102.	1.9	37
13	Bisphenol A induces permanent squamous change in mouse prostatic epithelium. Differentiation, 2007, 75, 745-756.	1.9	34
14	Zinc and Metallothionein Levels and Expression of Zinc Transporters in Androgenâ€Independent Subline of LNCaP Cells. Journal of Andrology, 2004, 25, 154-161.	2.0	31
15	Heterogenous induction of carcinoma-associated fibroblast-like differentiation in normal human prostatic fibroblasts by co-culturing with prostate cancer cells. Journal of Cellular Biochemistry, 2011, 112, 3604-3611.	2.6	26
16	Evidence that androgen-independent stromal growth factor signals promote androgen-insensitive prostate cancer cell growth in vivo. Endocrine-Related Cancer, 2009, 16, 415-428.	3.1	24
17	Interleukinâ€6 induces VEGF secretion from prostate cancer cells in a manner independent of androgen receptor activation. Prostate, 2018, 78, 849-856.	2.3	23
18	Antifibrotic Agent Pirfenidone Suppresses Proliferation of Human Pancreatic Cancer Cells by Inducing G0/G1 Cell Cycle Arrest. Pharmacology, 2019, 103, 250-256.	2.2	23

KENICHIRO ISHII

#	Article	IF	CITATIONS
19	Use of tissue recombination to predict phenotypes of transgenic mouse models of prostate carcinoma. Laboratory Investigation, 2005, 85, 1086-1103.	3.7	22
20	Isolation and Characterization of LNCaP Sublines Differing in Hormone Sensitivity. Journal of Andrology, 2007, 28, 670-678.	2.0	21
21	Role of Stromal Paracrine Signals in Proliferative Diseases of the Aging Human Prostate. Journal of Clinical Medicine, 2018, 7, 68.	2.4	19
22	Role of stromal tenascin-C in mouse prostatic development and epithelial cell differentiation. Developmental Biology, 2008, 324, 310-319.	2.0	18
23	Natural history of human prostate gland: Morphometric and histopathological analysis of Japanese men. Prostate, 2005, 65, 355-364.	2.3	17
24	Oral Naftopidil Suppresses Human Renal-Cell Carcinoma by Inducing G1 Cell-Cycle Arrest in Tumor and Vascular Endothelial Cells. Cancer Prevention Research, 2013, 6, 1000-1006.	1.5	17
25	Androgen receptor W741C and T877A mutations in AIDL cells, an androgen-independent subline of prostate cancer LNCaP cells. Tumor Biology, 2011, 32, 1097-1102.	1.8	15
26	Combination treatment with naftopidil increases the efficacy of radiotherapy in PC-3 human prostate cancer cells. Journal of Cancer Research and Clinical Oncology, 2017, 143, 933-939.	2.5	15
27	Identification of a new pharmacological activity of the phenylpiperazine derivative naftopidil: tubulin-binding drug. Journal of Chemical Biology, 2015, 8, 5-9.	2.2	14
28	Essential Roles of Epithelial Bone Morphogenetic Protein Signaling During Prostatic Development. Endocrinology, 2014, 155, 2534-2544.	2.8	13
29	Androgen-dependent prostate epithelial cell selection by targeting ARR2PBneo to the LPB-Tag model of prostate cancer. Laboratory Investigation, 2006, 86, 1074-1088.	3.7	12
30	Activation of FGF2-FGFR Signaling in the Castrated Mouse Prostate Stimulates the Proliferation of Basal Epithelial Cells1. Biology of Reproduction, 2013, 89, 81.	2.7	12
31	Fibroblasts prolong serum prostate-specific antigen decline after androgen deprivation therapy in prostate cancer. Laboratory Investigation, 2016, 96, 338-349.	3.7	12
32	Extract from Serenoa repens Suppresses the Invasion Activity of Human Urological Cancer Cells by Inhibiting Urokinase-Type Plasminogen Activator Biological and Pharmaceutical Bulletin, 2001, 24, 188-190.	1.4	10
33	Pirfenidone, an Anti-Fibrotic Drug, Suppresses the Growth of Human Prostate Cancer Cells by Inducing G1 Cell Cycle Arrest. Journal of Clinical Medicine, 2019, 8, 44.	2.4	10
34	Structural changes in α1-adrenoceptor antagonist-treated human prostatic stroma. Clinical and Experimental Medicine, 2010, 10, 99-106.	3.6	8
35	Additive naftopidil treatment synergizes docetaxel-induced apoptosis in human prostate cancer cells. Journal of Cancer Research and Clinical Oncology, 2018, 144, 89-98.	2.5	8
36	Characterization of the low pH/low nutrient-resistant LNCaP cell subline LNCaP-F10. Oncology Reports, 2012, 28, 2009-2015.	2.6	7

KENICHIRO ISHII

#	Article	IF	CITATIONS
37	Low Androgen Sensitivity Is Associated With Low Levels of Akt Phosphorylation in LNCaP-E9 Cells. Journal of Andrology, 2012, 33, 660-666.	2.0	7
38	Castration-induced stromal remodeling disrupts the reconstituted prostate epithelial structure. Laboratory Investigation, 2020, 100, 670-681.	3.7	7
39	TDP2 suppresses genomic instability induced by androgens in the epithelial cells of prostate glands. Genes To Cells, 2020, 25, 450-465.	1.2	7
40	Proprotein convertases modulate budding and branching morphogenesis of rat ventral prostate. International Journal of Developmental Biology, 2007, 51, 229-233.	0.6	7
41	Improvement in predicting tumorigenic phenotype of androgenâ€insensitive human LNCaP prostatic cancer cell subline in recombination with rat urogenital sinus mesenchyme. Cancer Science, 2008, 99, 2435-2443.	3.9	6
42	Heterogeneous induction of an invasive phenotype in prostate cancer cells by coculturing with patientâ€derived fibroblasts. Journal of Cellular Biochemistry, 2021, 122, 679-688.	2.6	5
43	Effect of transforming growth factor α overexpression on urogenital organ development in mouse. Differentiation, 2010, 80, 82-88.	1.9	4
44	Loss of Fibroblast-Dependent Androgen Receptor Activation in Prostate Cancer Cells is Involved in the Mechanism of Acquired Resistance to Castration. Journal of Clinical Medicine, 2019, 8, 1379.	2.4	4
45	SOX11-induced decrease in vimentin and an increase in prostate cancer cell migration attributed to cofilin activity. Experimental and Molecular Pathology, 2020, 117, 104542.	2.1	4
46	Manserin as a novel histochemical neuroendocrine marker in prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2013, 31, 787-795.	1.6	2
47	Inflammatory suppressive effect of prostate cancer cells with prolonged exposure to transforming growth factor β on macrophage-differentiated cells via downregulation of prostaglandin E2. Oncology Letters, 2014, 8, 1513-1518.	1.8	2
48	Predicting the tumorigenic phenotype of human bladder cancer cells by combining with fetal rat mesenchyme. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 472.e1-472.e9.	1.6	1
49	Cytobiology of Human Prostate Cancer Cells and Its Clinical Applications. Journal of Clinical Medicine, 2019, 8, 1716.	2.4	0
50	Tyrosine kinase inhibitor therapy prescribed for nonâ€urologic diseases can modify PSA titers in urology patients. Prostate, 2019, 79, 259-264.	2.3	0