N Justin Marshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1919662/publications.pdf

Version: 2024-02-01

210 papers

12,329 citations

59 h-index 95 g-index

223 all docs

223
docs citations

times ranked

223

8152 citing authors

#	Article	IF	CITATIONS
1	Tetrachromacy, oil droplets and bird plumage colours. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1998, 183, 621-633.	0.7	639
2	The biology of color. Science, 2017, 357, .	6.0	509
3	Monitoring coral bleaching using a colour reference card. Coral Reefs, 2006, 25, 453-460.	0.9	274
4	Mechanisms and behavioural functions of structural coloration in cephalopods. Journal of the Royal Society Interface, 2009, 6, S149-63.	1.5	248
5	Conspicuous males suffer higher predation risk: visual modelling and experimental evidence from lizards. Animal Behaviour, 2003, 66, 541-550.	0.8	246
6	Communication and camouflage with the same †bright†colours in reef fishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1243-1248.	1.8	241
7	Circular Polarization Vision in a Stomatopod Crustacean. Current Biology, 2008, 18, 429-434.	1.8	241
8	An Integrative Framework for the Appraisal of Coloration in Nature. American Naturalist, 2015, 185, 705-724.	1.0	206
9	A Different Form of Color Vision in Mantis Shrimp. Science, 2014, 343, 411-413.	6.0	196
10	Polarization Vision and Its Role in Biological Signaling. Integrative and Comparative Biology, 2003, 43, 549-558.	0.9	186
11	A retina with at least ten spectral types of photoreceptors in a mantis shrimp. Nature, 1989, 339, 137-140.	13.7	183
12	The role of colour in signalling and male choice in the agamid lizardCtenophorus ornatus. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 445-452.	1.2	167
13	Ocular media transmission of coral reef fish — can coral reef fish see ultraviolet light?. Vision Research, 2001, 41, 133-149.	0.7	161
14	Colour-blind camouflage. Nature, 1996, 382, 408-409.	13.7	153
15	Vision using multiple distinct rod opsins in deep-sea fishes. Science, 2019, 364, 588-592.	6.0	151
16	The Eyes Have It: Regulatory and Structural Changes Both Underlie Cichlid Visual Pigment Diversity. PLoS Biology, 2009, 7, e1000266.	2.6	148
17	Visual Biology of Hawaiian Coral Reef Fishes. I. Ocular Transmission and Visual Pigments. Copeia, 2003, 2003, 433-454.	1.4	147
18	Fluorescent Signaling in Parrots. Science, 2002, 295, 92-92.	6.0	146

#	Article	IF	Citations
19	Ultraviolet signals in birds are special. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 61-67.	1.2	145
20	Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus. Journal of Experimental Biology, 2003, 206, 3607-3613.	0.8	144
21	A unique colour and polarization vision system in mantis shrimps. Nature, 1988, 333, 557-560.	13.7	129
22	Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1493-1498.	3.3	129
23	The colourful world of the mantis shrimp. Nature, 1999, 401, 873-874.	13.7	122
24	Mistaken identity? Visual similarities of marine debris to natural prey items of sea turtles. BMC Ecology, 2014, 14, 14.	3.0	118
25	Stomatopod eye structure and function: A review. Arthropod Structure and Development, 2007, 36, 420-448.	0.8	116
26	Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods in Ecology and Evolution, 2020, 11, 316-332.	2.2	114
27	Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. Journal of Experimental Biology, 2014, 217, 323-326.	0.8	113
28	Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication. Current Biology, 1999, 9, 755-758.	1.8	109
29	Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2098-2104.	1.2	109
30	Visual Biology of Hawaiian Coral Reef Fishes. III. Environmental Light and an Integrated Approach to the Ecology of Reef Fish Vision. Copeia, 2003, 2003, 467-480.	1.4	106
31	CoralWatch: education, monitoring, and sustainability through citizen science. Frontiers in Ecology and the Environment, 2012, 10, 332-334.	1.9	98
32	Bioinspired polarization vision enables underwater geolocalization. Science Advances, 2018, 4, eaao6841.	4.7	95
33	Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications. Proceedings of the IEEE, 2014, 102, 1450-1469.	16.4	94
34	Spectral sensitivity in a sponge larva. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2002, 188, 199-202.	0.7	90
35	A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region. Nature Photonics, 2009, 3, 641-644.	15.6	90
36	Patterns and properties of polarized light in air and water. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 619-626.	1.8	90

#	Article	IF	Citations
37	Fluorescent Enhancement of Signaling in a Mantis Shrimp. Science, 2004, 303, 51-51.	6.0	87
38	Multiple spectral classes of photoreceptors in the retinas of gonodactyloid stomatopod crustaceans. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1989, 166, 261.	0.7	85
39	Behavioural evidence for colour vision in stomatopod crustaceans. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 179, 473.	0.7	85
40	Tunable colour vision in a mantis shrimp. Nature, 2001, 411, 547-548.	13.7	82
41	The variable colours of the fiddler crab Uca vomeris and their relation to background and predation. Journal of Experimental Biology, 2006, 209, 4140-4153.	0.8	82
42	A spitting image: specializations in archerfish eyes for vision at the interface between air and water. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2607-2615.	1.2	81
43	Double cones are used for colour discrimination in the reef fish, <i>Rhinecanthus aculeatus </i> Biology Letters, 2010, 6, 537-539.	1.0	81
44	Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. Journal of Experimental Biology, 2004, 207, 4587-4594.	0.8	80
45	Colour vision in marine organisms. Current Opinion in Neurobiology, 2015, 34, 86-94.	2.0	80
46	Retinal specializations in the blue marlin: eyes designed for sensitivity to low light levels. Marine and Freshwater Research, 2003, 54, 333.	0.7	79
47	Are Corals Colorful?. Photochemistry and Photobiology, 2006, 82, 345.	1.3	79
48	Dynamic polarization vision in mantis shrimps. Nature Communications, 2016, 7, 12140.	5.8	78
49	Eggshell colour does not predict measures of maternal investment in eggs of Turdus thrushes. Die Naturwissenschaften, 2008, 95, 713-721.	0.6	74
50	High-resolution polarisation vision in a cuttlefish. Current Biology, 2012, 22, R121-R122.	1.8	74
51	Fluorescence as a means of colour signal enhancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160335.	1.8	74
52	The eye-movements of the mantis shrimp Odontodactylus scyllarus (Crustacea: Stomatopoda). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990, 167, 155.	0.7	72
53	Giant Deep-Sea Protist Produces Bilaterian-like Traces. Current Biology, 2008, 18, 1849-1854.	1.8	72
54	Blue and Yellow Signal Cleaning Behavior in Coral Reef Fishes. Current Biology, 2009, 19, 1283-1287.	1.8	72

#	Article	IF	CITATIONS
55	Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. Journal of Experimental Biology, 2020, 223, .	0.8	72
56	Mimicry in coral reef fish: how accurate is this deception in terms of color and luminance?. Behavioral Ecology, 2009, 20, 459-468.	1.0	67
57	Behavioural relevance of polarization sensitivity as a target detection mechanism in cephalopods and fishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 734-741.	1.8	66
58	Circularly Polarized Light as a Communication Signal in Mantis Shrimps. Current Biology, 2015, 25, 3074-3078.	1.8	65
59	Vertical Distribution and Migration Patterns of Nautilus pompilius. PLoS ONE, 2011, 6, e16311.	1.1	64
60	Ultraviolet photoreception in mantis shrimp. Vision Research, 1994, 34, 1443-1452.	0.7	62
61	Spectral tuning and the visual ecology of mantis shrimps. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1263-1267.	1.8	62
62	Colourful objects through animal eyes. Color Research and Application, 2001, 26, S214-S217.	0.8	61
63	To Be Seen or to Hide: Visual Characteristics of Body Patterns for Camouflage and Communication in the Australian Giant Cuttlefish $\langle i \rangle$ Sepia apama $\langle i \rangle$. American Naturalist, 2011, 177, 681-690.	1.0	61
64	Specialization of retinal function in the compound eyes of mantis shrimps. Vision Research, 1994, 34, 2639-2656.	0.7	60
65	Visual Biology of Hawaiian Coral Reef Fishes. II. Colors of Hawaiian Coral Reef Fish. Copeia, 2003, 2003, 455-466.	1.4	60
66	Colours and colour vision in reef fishes: Past, present and future research directions. Journal of Fish Biology, 2019, 95, 5-38.	0.7	58
67	Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from <i>in situ</i> polarization imaging of transparent zooplankton. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 655-670.	1.8	57
68	Unconventional colour vision. Current Biology, 2014, 24, R1150-R1154.	1.8	56
69	Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides. Science Advances, 2017, 3, eaao4709.	4.7	55
70	Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water. Vision Research, 1997, 37, 3299-3309.	0.7	54
71	Polarisation vision. Current Biology, 2011, 21, R101-R105.	1.8	53
72	Depthâ€dependent plasticity in opsin gene expression varies between damselfish (Pomacentridae) species. Molecular Ecology, 2016, 25, 3645-3661.	2.0	53

#	Article	IF	CITATIONS
73	Potential ultraviolet vision in pre-settlement larvae and settled reef fish—A comparison across 23 families. Vision Research, 2007, 47, 2337-2352.	0.7	51
74	Colour vision and response bias in a coral reef fish. Journal of Experimental Biology, 2013, 216, 2967-73.	0.8	49
75	Eye-Size Variability in Deep-Sea Lanternfishes (Myctophidae): An Ecological and Phylogenetic Study. PLoS ONE, 2013, 8, e58519.	1.1	49
76	Are avian eggshell colours effective intraspecific communication signals in the Muscicapoidea? A perceptual modelling approach. Ibis, 2009, 151, 689-698.	1.0	48
77	Camouflage in marine fish. , 2011, , 186-211.		48
78	High e-vector acuity in the polarisation vision system of the fiddler crab <i>Uca vomeris</i> . Journal of Experimental Biology, 2012, 215, 2128-2134.	0.8	48
79	The intrarhabdomal filters in the retinas of mantis shrimps. Vision Research, 1994, 34, 279-291.	0.7	47
80	The fish eye view: are cichlids conspicuous?. Journal of Experimental Biology, 2010, 213, 2243-2255.	0.8	45
81	Phenotypic Plasticity Confers Multiple Fitness Benefits to a Mimic. Current Biology, 2015, 25, 949-954.	1.8	45
82	The Design of Color Signals and Color Vision in Fishes. , 2003, , 194-222.		43
83	Polarization distance: a framework for modelling object detection by polarization vision systems. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20131632.	1.2	43
84	An insect-like mushroom body in a crustacean brain. ELife, 2017, 6, .	2.8	43
85	Transmission of ocular media in labrid fishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1257-1261.	1.8	42
86	NO EVIDENCE OF FEMALE CHOICE FOR A CONDITION-DEPENDENT TRAIT IN THE AGAMID LIZARD, CTENOPHORUS ORNATUS. Behaviour, 2001, 138, 965-980.	0.4	42
87	From crypsis to mimicry: changes in colour and the configuration of the visual system during ontogenetic habitat transitions in a coral reef fish. Journal of Experimental Biology, 2016, 219, 2545-58.	0.8	42
88	Parallel Processing and Image Analysis in the Eyes of Mantis Shrimps. Biological Bulletin, 2001, 200, 177-183.	0.7	41
89	Target Detection Is Enhanced by Polarization Vision in a Fiddler Crab. Current Biology, 2015, 25, 3069-3073.	1.8	41
90	Dynamic Skin Patterns in Cephalopods. Frontiers in Physiology, 2017, 8, 393.	1.3	41

#	Article	IF	Citations
91	Retinal specialization through spatially varying cell densities and opsin coexpression in cichlid fish. Journal of Experimental Biology, 2017, 220, 266-277.	0.8	40
92	Opsin Evolution in Damselfish: Convergence, Reversal, and Parallel Evolution Across Tuning Sites. Journal of Molecular Evolution, 2012, 75, 79-91.	0.8	39
93	Eye Design and Color Signaling in a Stomatopod Crustacean <i>Gonodactylus smithii</i> Brain, Behavior and Evolution, 2000, 56, 107-122.	0.9	38
94	Facultative mimicry: cues for colour change and colour accuracy in a coral reef fish. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 117-122.	1.2	38
95	Changes in light-reflecting properties of signalling appendages alter mate choice behaviour in a stomatopod crustacean<1>Haptosquilla trispinosaPhysiology, 2011, 44, 1-11.	0.4	38
96	Visual Acuity in a Species of Coral Reef Fish:Rhinecanthus aculeatus. Brain, Behavior and Evolution, 2014, 83, 31-42.	0.9	37
97	Electrophysiological evidence for linear polarization sensitivity in the compound eyes of the stomatopod crustacean Gonodactylus chiragra. Journal of Experimental Biology, 2006, 209, 4262-4272.	0.8	36
98	Stabilizing selection on individual pattern elements of aposematic signals. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170926.	1.2	36
99	The exceptional diversity of visual adaptations in deep-sea teleost fishes. Seminars in Cell and Developmental Biology, 2020, 106, 20-30.	2.3	36
100	Nautilus pompilius Life History and Demographics at the Osprey Reef Seamount, Coral Sea, Australia. PLoS ONE, 2011, 6, e16312.	1.1	36
101	A novel function for a carotenoid: astaxanthin used as a polarizer for visual signalling in a mantis shrimp. Journal of Experimental Biology, 2012, 215, 584-589.	0.8	35
102	Spectral Sensitivities and Color Signals in a Polymorphic Damselfly. PLoS ONE, 2014, 9, e87972.	1.1	35
103	Colour vision in billfish. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1253-1256.	1.8	34
104	Multiple Genetic Mechanisms Contribute to Visual Sensitivity Variation in the Labridae. Molecular Biology and Evolution, 2016, 33, 201-215.	3.5	34
105	Seeing in the deep-sea: visual adaptations in lanternfishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160070.	1.8	34
106	Toxicity and taste: unequal chemical defences in a mimicry ring. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180457.	1.2	34
107	Visual system diversity in coral reef fishes. Seminars in Cell and Developmental Biology, 2020, 106, 31-42.	2.3	34
108	Independent and conjugate eye movements during optokinesis in teleost fish. Journal of Experimental Biology, 2002, 205, 1241-1252.	0.8	34

#	Article	IF	CITATIONS
109	Some optical features of the eyes of stomatopods. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1993, 173, 565-582.	0.7	33
110	Neuroarchitecture of the color and polarization vision system of the Stomatopod haptosquilla. Journal of Comparative Neurology, 2003, 467, 326-342.	0.9	33
111	Behavioural evidence for colour vision in an elasmobranch. Journal of Experimental Biology, 2011, 214, 4186-4192.	0.8	33
112	Filtering and polychromatic vision in mantis shrimps: themes in visible and ultraviolet vision. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130032.	1.8	33
113	Insect-Like Organization of the Stomatopod Central Complex: Functional and Phylogenetic Implications. Frontiers in Behavioral Neuroscience, 2017, 11, 12.	1.0	33
114	An Ishihara-style test of animal colour vision. Journal of Experimental Biology, 2019, 222, .	0.8	33
115	The relationship between lens transmission and opsin gene expression in cichlids from Lake Malawi. Vision Research, 2010, 50, 357-363.	0.7	32
116	Visual pigment diversity in two genera of mantis shrimps implies rapid evolution (Crustacea;) Tj ETQq0 0 0 rgBT Physiology, 1996, 179, 371.	/Overlock 0.7	10 Tf 50 467 31
117	The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae). PLoS ONE, 2014, 9, e99957.	1.1	31
118	The Dutch Disease effects on tourism – The case of Australia. Tourism Management, 2015, 46, 610-622.	5.8	31
119	Photoreceptor spectral diversity in the retinas of squilloid and lysiosquilloid stomatopod crustaceans. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1993, 172, 339-350.	0.7	30
120	Compound eyes and ocular pigments of crustacean larvae (Stomatopoda and decapoda, brachyura). Marine and Freshwater Behaviour and Physiology, 1995, 26, 219-231.	0.4	29
121	Vision and lack of vision in the ocean. Current Biology, 2017, 27, R494-R502.	1.8	29
122	Polarisation signals: a new currency for communication. Journal of Experimental Biology, 2019, 222, .	0.8	29
123	Visual ecology of the Australian lungfish (Neoceratodus forsteri). BMC Ecology, 2008, 8, 21.	3.0	28
124	Toward an MRI-Based Mesoscale Connectome of the Squid Brain. IScience, 2020, 23, 100816.	1.9	28
125	Evolution of Neural Computations: Mantis Shrimp and Human Color Decoding. I-Perception, 2014, 5, 492-496.	0.8	27
126	Modelling fish colour constancy, and the implications for vision and signalling in water. Journal of Experimental Biology, 2016, 219, 1884-92.	0.8	27

#	Article	IF	CITATIONS
127	A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish, Amphiprion akindynos. Scientific Reports, 2019, 9, 16459.	1.6	27
128	Occlusable corneas in toadfishes: light transmission, movement and ultrastruture of pigment during light- and dark-adaptation. Journal of Experimental Biology, 2003, 206, 2177-2190.	0.8	26
129	Polarization sensitivity in two species of cuttlefish – <i>Sepia plangon</i> (Gray 1849) and <i>Sepia mestus</i> (Gray 1849) – demonstrated with polarized optomotor stimuli. Journal of Experimental Biology, 2010, 213, 3364-3370.	0.8	26
130	Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae). Brain, Behavior and Evolution, 2014, 84, 262-276.	0.9	26
131	Short term colour vision plasticity on the reef: Changes in opsin expression under varying light conditions differ between ecologically distinct reef fish species. Journal of Experimental Biology, 2018, 221, .	0.8	26
132	Does conspicuousness scale linearly with colour distance? A test using reef fish. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201456.	1.2	26
133	Comparative brain structure and visual processing in octopus from different habitats. Current Biology, 2022, 32, 97-110.e4.	1.8	26
134	Mimicry, colour forms and spectral sensitivity of the bluestriped fangblenny, <i>Plagiotremus rhinorhynchos </i> . Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1565-1573.	1.2	25
135	Nautilus at Risk – Estimating Population Size and Demography of Nautilus pompilius. PLoS ONE, 2011, 6, e16716.	1.1	25
136	The retinas of mantis shrimps from low-light environments (Crustacea; Stomatopoda;) Tj ETQq0 0 0 rgBT /Overloben Behavioral Physiology, 1994, 174, 607.	ock 10 Tf 5 0.7	50 387 Td (Go 24
137	Out of the blue: the evolution of horizontally polarized signals in <i>Haptosquilla</i> (Crustacea,) Tj ETQq1 1 0.7	84314 rgB	T /Oyerlock 1
138	Range-finding in squid using retinal deformation and image blur. Current Biology, 2014, 24, R64-R65.	1.8	24
139	The eyes of lanternfishes (Myctophidae, Teleostei): Novel ocular specializations for vision in dim light. Journal of Comparative Neurology, 2014, 522, 1618-1640.	0.9	24
140	Fish use colour to learn compound visual signals. Animal Behaviour, 2017, 125, 93-100.	0.8	24
141	Cardinalfishes (Apogonidae) show visual system adaptations typical of nocturnally and diurnally active fish. Molecular Ecology, 2019, 28, 3025-3041.	2.0	24
142	Null point of discrimination in crustacean polarisation vision. Journal of Experimental Biology, 2014, 217, 2462-7.	0.8	23
143	Photoreceptor projection and termination pattern in the lamina of gonodactyloid stomatopods (mantis shrimp). Cell and Tissue Research, 2005, 321, 273-284.	1.5	22
144	Behavioral color vision in a cichlid fish: <i>Metriaclima benetos</i> . Journal of Experimental Biology, 2017, 220, 2887-2899.	0.8	22

#	Article	IF	Citations
145	Complex Visual Adaptations in Squid for Specific Tasks in Different Environments. Frontiers in Physiology, 2017, 8, 105.	1.3	22
146	Animal Polarization Imaging and Implications for Optical Processing. Proceedings of the IEEE, 2014, 102, 1427-1434.	16.4	21
147	Comparative visual ecology of cephalopods from different habitats. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161346.	1.2	21
148	The pit organs of elasmobranchs: a review. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1131-1134.	1.8	20
149	The comparative morphology of pit organs in elasmobranchs. Journal of Morphology, 2009, 270, 688-701.	0.6	20
150	Modeling the Impact of Australia's Mining Boom on Tourism. Journal of Travel Research, 2016, 55, 233-245.	5.8	20
151	Disruptive colouration in reef fish: does matching the background reduce predation risk?. Journal of Experimental Biology, 2017, 220, 1962-1974.	0.8	20
152	Population densities predict forebrain size variation in the cleaner fish <i>Labroides dimidiatus</i> Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192108.	1.2	20
153	Visual system development of the spotted unicornfish, <i>Naso brevirostris</i> (Acanthuridae). Journal of Experimental Biology, 2019, 222, .	0.8	20
154	Polarization signals in the marine environment. , 2003, 5158, 85.		19
155	Coral health monitoring: linking coral colour and remote sensing techniques. Canadian Journal of Remote Sensing, 2009, 35, 276-286.	1.1	19
156	Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects., 2003,, 343-372.		18
157	Polarization signals in mantis shrimps. , 2009, , .		18
158	Coral reef fish perceive lightness illusions. Scientific Reports, 2016, 6, 35335.	1.6	18
159	Neural organization of afferent pathways from the stomatopod compound eye. Journal of Comparative Neurology, 2017, 525, 3010-3030.	0.9	18
160	Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter. Brain, Behavior and Evolution, 2015, 85, 77-93.	0.9	17
161	Polarization sensitivity and retinal topography of the striped pyjama squid (<i>Sepioloidea) Tj ETQq1 1 0.784314</i>	1 rgBT /Ov	erlock 10 Tf 5
162	Lanternfish (Myctophidae) Zoogeography off Eastern Australia: A Comparison with Physicochemical Biogeography. PLoS ONE, 2013, 8, e80950.	1.1	16

#	Article	IF	Citations
163	Ultraviolet polarisation sensitivity in the stomatopod crustacean Odontodactylus scyllarus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 1153-1162.	0.7	15
164	A fish-eye view of cuttlefish camouflage using <i>in situ </i> spectrometry. Biological Journal of the Linnean Society, 2013, 109, 535-551.	0.7	15
165	Color discrimination thresholds in a cichlid fish: <i>Metriaclima benetos</i> . Journal of Experimental Biology, 2019, 222, .	0.8	15
166	Response to â€The importance of accurate CO2 dosing and measurement in ocean acidification studies'. Journal of Experimental Biology, 2014, 217, 1828-1829.	0.8	14
167	Polarization vision seldom increases the sighting distance of silvery fish. Current Biology, 2016, 26, R752-R754.	1.8	14
168	Triggerfish uses chromaticity and lightness for object segregation. Royal Society Open Science, 2017, 4, 171440.	1.1	14
169	Multimodal signals: ultraviolet reflectance and chemical cues in stomatopod agonistic encounters. Royal Society Open Science, 2016, 3, 160329.	1.1	13
170	Can chromatic aberration enable color vision in natural environments?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6908-E6909.	3.3	13
171	Microhabitat partitioning correlates with opsin gene expression in coral reef cardinalfishes (Apogonidae). Functional Ecology, 2020, 34, 1041-1052.	1.7	13
172	Molecular Evolution of Ultraviolet Visual Opsins and Spectral Tuning of Photoreceptors in Anemonefishes (Amphiprioninae). Genome Biology and Evolution, $2021,13,.$	1.1	13
173	Colourful objects through animal eyes. Color Research and Application, 2001, 26, S214-S217.	0.8	13
174	More than noise: Context-dependant luminance contrast discrimination in a coral reef fish ($\langle i \rangle$ Rhinecanthus aculeatus $\langle i \rangle$). Journal of Experimental Biology, 2020, 223, .	0.8	13
175	A dynamic broadband reflector built from microscopic silica spheres in the â€~disco' clam <i>Ctenoides ales</i> . Journal of the Royal Society Interface, 2014, 11, 20140407.	1.5	12
176	Morphological changes of the optic lobe from late embryonic to adult stages in oval squids <i>Sepioteuthis lessoniana</i> . Journal of Morphology, 2018, 279, 75-85.	0.6	12
177	The visual ecology of Holocentridae, a nocturnal coral reef fish family with a deep-sea-like multibank retina. Journal of Experimental Biology, 2021, 224, .	0.8	12
178	Theft of bower decorations among male Satin Bowerbirds (Ptilonorhynchus violaceus): why are some decorations more popular than others?. Emu, 2006, 106, 175-180.	0.2	11
179	Circularly polarized light detection in stomatopod crustaceans: a comparison of photoreceptors and possible function in six species. Journal of Experimental Biology, 2017, 220, 3222-3230.	0.8	11
			_

Colour discrimination thresholds vary throughout colour space in a reef fish (<i>Rhinecanthus) Tj ETQq0 0 0 rgBT $\frac{10}{0.8}$ rlock $\frac{10}{11}$ Tf 50 62

180

#	Article	IF	Citations
181	A new category of eye movements in a small fish. Current Biology, 1999, 9, R272-R273.	1.8	10
182	Representation of the stomatopod's retinal midband in the optic lobes: Putative neural substrates for integrating chromatic, achromatic and polarization information. Journal of Comparative Neurology, 2018, 526, 1148-1165.	0.9	10
183	CRISPR/Cas9-mediated generation of biallelic FO anemonefish (Amphiprion ocellaris) mutants. PLoS ONE, 2021, 16, e0261331.	1.1	10
184	Biological polarized light reflectors in stomatopod crustaceans., 2005,,.		9
185	High levels of reflectivity and pointillist structural color in fish, cephalopods, and beetles. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3387; author reply E3388.	3.3	9
186	Intracellular Recordings of Spectral Sensitivities in Stomatopods: a Comparison across Species. Integrative and Comparative Biology, 2017, 57, 1117-1129.	0.9	9
187	The reniform body: An integrative lateral protocerebral neuropil complex of Eumalacostraca identified in Stomatopoda and Brachyura. Journal of Comparative Neurology, 2020, 528, 1079-1094.	0.9	9
188	Underwater caustics disrupt prey detection by a reef fish. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192453.	1.2	9
189	Polarisation Signals. , 2014, , 407-442.		9
190	Do not be distracted by pretty colors: a comment on Olsson et al Behavioral Ecology, 2018, 29, 286-287.	1.0	8
191	Dynamic Courtship Signals and Mate Preferences in Sepia plangon. Frontiers in Physiology, 2020, 11, 845.	1.3	8
192	Thresholds of polarization vision in octopuses. Journal of Experimental Biology, 2021, 224, .	0.8	8
193	Polarisation Vision of Crustaceans. , 2014, , 171-216.		8
194	Seeing Picasso: an investigation into the visual system of the triggerfish <i>Rhinecanthus aculeatus</i> . Journal of Experimental Biology, 2022, 225, .	0.8	8
195	Visual function: How spiders find the right rock to crawl under. Current Biology, 1999, 9, R918-R921.	1.8	7
196	Pattern edges improve predator learning of aposematic signals. Behavioral Ecology, 0, , .	1.0	7
197	Lens eyes in protists. Current Biology, 2020, 30, R458-R459.	1.8	7
198	Morphological characterization of retinal bipolar cells in the marine teleost <i>Rhinecanthus aculeatus</i> . Journal of Comparative Neurology, 2010, 518, 3117-3129.	0.9	6

#	Article	IF	CITATIONS
199	Corneal microprojections in coleoid cephalopods. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2012, 198, 849-856.	0.7	6
200	A fiveâ€channel LED display to investigate UV perception. Methods in Ecology and Evolution, 2021, 12, 602-607.	2.2	6
201	New directions in the detection of polarized light. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 615-616.	1.8	5
202	Differences in signal contrast and camouflage among different colour variations of a stomatopod crustacean, Neogonodactylus oerstedii. Scientific Reports, 2020, 10, 1236.	1.6	4
203	Comment on "Open-ocean fish reveal an omnidirectional solution to camouflage in polarized environments― Science, 2016, 353, 552-552.	6.0	3
204	Light and the Optical Environment. , 2014, , .		3
205	Color Vision., 2014,,.		2
206	Colour vision in stomatopod crustaceans: more questions than answers. Journal of Experimental Biology, 2022, 225, .	0.8	2
207	Justin Marshall. Current Biology, 2016, 26, R395-R397.	1.8	1
208	Neuroethology Meets Brain, Behavior and Evolution: Promoting the Study of the Neural Basis of Behavior. Brain, Behavior and Evolution, 2019, 94, 5-6.	0.9	0
209	The astonishing diversity of vision: Introduction to an issue of Vision Research on animal vision. Vision Research, 2020, 172, 62-63.	0.7	0
210	Underwater solar navigation using the in-water light field (Conference Presentation). , 2019, , .		0