Eduardo Costa Girão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1919331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Topographic and Spectroscopic Characterization of Electronic Edge States in CVD Grown Graphene Nanoribbons. Nano Letters, 2012, 12, 1928-1933.	4.5	104
2	Quantum Dots in Graphene Nanoribbons. Nano Letters, 2017, 17, 4277-4283.	4.5	99
3	Enhanced thermoelectric figure of merit in assembled graphene nanoribbons. Physical Review B, 2012, 86, .	1.1	81
4	Emergence of Atypical Properties in Assembled Graphene Nanoribbons. Physical Review Letters, 2011, 107, 135501.	2.9	69
5	Improved All-Carbon Spintronic Device Design. Scientific Reports, 2015, 5, 7634.	1.6	52
6	Electronic Transport Properties of Assembled Carbon Nanoribbons. ACS Nano, 2012, 6, 6483-6491.	7.3	29
7	Functionalization of single-wall carbon nanotubes through chloroform adsorption: theory and experiment. Physical Chemistry Chemical Physics, 2010, 12, 1518.	1.3	27
8	Elastic properties of graphyne-based nanotubes. Computational Materials Science, 2019, 170, 109153.	1.4	25
9	Structural and electronic properties of graphitic nanowiggles. Physical Review B, 2012, 85, .	1.1	24
10	First principles study of 1,2-dichlorobenzene adsorption on metallic carbon nanotubes. International Journal of Quantum Chemistry, 2006, 106, 2558-2563.	1.0	23
11	Naphthylenes: 1D and 2D carbon allotropes based on naphthyl units. Carbon, 2019, 153, 792-803.	5.4	23
12	Nicotine adsorption on single wall carbon nanotubes. Journal of Hazardous Materials, 2010, 184, 678-683.	6.5	19
13	A single molecule rectifier with strong push-pull coupling. Journal of Chemical Physics, 2008, 129, 204701.	1.2	17
14	Patchwork algorithm for the parallel computation of the Green's function in open systems. Journal of Computational Electronics, 2013, 12, 123-133.	1.3	17
15	Computational study of elastic, structural stability and dynamics properties of penta-graphene membrane. Chemical Physics, 2021, 542, 111052.	0.9	16
16	Quasiparticle band gaps of graphene nanowiggles and their magnetism on Au(111). Physical Review B, 2013, 88, .	1.1	15
17	Spin-Negative Differential Resistance in Zigzag Graphene Nanoribbons with Side-Attached Porphine Molecule. Journal of Physical Chemistry C, 2018, 122, 15911-15921.	1.5	14
18	Electronic properties of tetragraphene nanoribbons. Physical Review Materials, 2019, 3, .	0.9	14

Eduardo Costa Girão

#	Article	IF	CITATIONS
19	Tuning the electronic and quantum transport properties of nitrogenated holey graphene nanoribbons. Journal of Materials Chemistry C, 2017, 5, 11856-11866.	2.7	13
20	One- and two-dimensional carbon nanostructures based on unfolded buckyballs: An <i>ab initio</i> investigation of their electronic properties. Physical Review B, 2017, 95, .	1.1	13
21	Electronic and structural properties of tetragraphenes. Carbon, 2020, 167, 403-413.	5.4	11
22	Electronic and magnetic structures of coronene-based graphitic nanoribbons. Physical Chemistry Chemical Physics, 2014, 16, 3603.	1.3	10
23	Mechanical Properties of Pentagraphene-based Nanotubes: A Molecular Dynamics Study. MRS Advances, 2018, 3, 97-102.	0.5	10
24	Structural and electronic properties of nanotubes constructed from fragmented fullerenes. Carbon, 2019, 147, 616-627.	5.4	10
25	Tripentaphenes: two-dimensional acepentalene-based nanocarbon allotropes. Physical Chemistry Chemical Physics, 2020, 22, 23195-23206.	1.3	10
26	Quantifying energetics of topological frustration in carbon nanostructures. Physical Review B, 2014, 89, .	1.1	9
27	Emergent magnetism in irradiated graphene nanostructures. Carbon, 2014, 78, 196-203.	5.4	9
28	High efficiency spin-valve and spin-filter in a doped rhombic graphene quantum dot device. Journal of Magnetism and Magnetic Materials, 2018, 451, 532-539.	1.0	8
29	Electronic and Transport Properties of Graphene Nanoribbons Based on Super-Heptazethrene Molecular Blocks. Journal of Physical Chemistry C, 2021, 125, 11235-11248.	1.5	7
30	Electronic properties of 2D and 1D carbon allotropes based on a triphenylene structural unit. Physical Chemistry Chemical Physics, 2021, 23, 25114-25125.	1.3	7
31	Electronic transport properties of carbon nanotoroids. Nanotechnology, 2011, 22, 075701.	1.3	6
32	Mechanical Properties of Phagraphene Membranes: A Fully Atomistic Molecular Dynamics Investigation. MRS Advances, 2018, 3, 67-72.	0.5	6
33	Electronic properties of N-rich graphene nano-chevrons. Physical Chemistry Chemical Physics, 2021, 23, 13204-13215.	1.3	6
34	Mechanical properties of single-walled penta-graphene-based nanotubes: A DFT and Classical molecular dynamics study. Chemical Physics, 2021, 547, 111187.	0.9	6
35	Electronic transmission selectivity in multiterminal graphitic nanorings. Applied Physics Letters, 2011, 98, 112111.	1.5	5
36	Electronic properties of three-terminal graphitic nanowiggles. Physical Review B, 2014, 90, .	1.1	4

Eduardo Costa Girão

#	Article	IF	CITATIONS
37	Naphthylene- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>î³ </mml:mi> : 1D and 2D carbon allotropes based on the fusion of phenyl- and naphthyl-like groups. Physical Review Materials, 2020, 4, .</mml:math 	0.9	4
38	Electronic and transport properties of graphene nanoribbon barbellâ€shaped heterojunctions. Physica Status Solidi (B): Basic Research, 2013, 250, 2417-2423.	0.7	3
39	Electronic transport in three-terminal triangular carbon nanopatches. Nanotechnology, 2014, 25, 045706.	1.3	3
40	Electronic, transport, and magnetic properties of punctured carbon nanotubes. Physical Review B, 2016, 94, .	1.1	3
41	Modeling the Kondo effect of a magnetic atom adsorbed on graphene. 2D Materials, 2019, 6, 035038.	2.0	3
42	Structural and electronic properties of nonconventional $\hat{I}\pm$ -graphyne nanocarbons. Physical Review Materials, 2022, 6, .	0.9	2
43	Electronic and magnetic properties of tripentaphene nanoribbons. Physical Review Materials, 2022, 6, .	0.9	2
44	Heterospin Junctions in Zigzag-Edged Graphene Nanoribbons. Applied Sciences (Switzerland), 2014, 4, 351-365.	1.3	1
45	Structural and electronic properties of double-walled α-graphyne nanotubes. Computational Materials Science, 2021, 200, 110768.	1.4	1
46	Electronic properties of boron-rich graphene nanowiggles. Computational Materials Science, 2022, 201, 110907.	1.4	1
47	Modeling and Simulation of Electron Transport at the Nanoscale: Illustrations in Low-Dimensional Carbon Nanostructures. Advances in Atom and Single Molecule Machines, 2013, , 123-133.	0.0	0
48	Electronic properties of carbon sheets and nanoribbons based on acepentalene-like building blocks. Computational Materials Science, 2022, 211, 111520.	1.4	0
49	Phenyl- and naphthyl-type heteroatom substitution blocks in naphthylene- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e883" altimg="si39.svg"><mml:mi>î³</mml:mi>: A DFT study. Computational Materials Science, 2022, 213, 111578.</mml:math 	1.4	0