
Ana Agusti Feliu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1919147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential Neuroprotective Role of Sugammadex: A Clinical Study on Cognitive Function Assessment in an Enhanced Recovery After Cardiac Surgery Approach and an Experimental Study. Frontiers in Cellular Neuroscience, 2022, 16, 789796.	1.8	5
2	Bacteroides uniformis CECT 7771 Modulates the Brain Reward Response to Reduce Binge Eating and Anxiety-Like Behavior in Rat. Molecular Neurobiology, 2021, 58, 4959-4979.	1.9	20
3	Cirrhotic patients with minimal hepatic encephalopathy have increased capacity to eliminate superoxide and peroxynitrite in lymphocytes, associated with cognitive impairment. Free Radical Research, 2018, 52, 118-133.	1.5	4
4	Bifidobacterium pseudocatenulatum CECT 7765 Ameliorates Neuroendocrine Alterations Associated with an Exaggerated Stress Response and Anhedonia in Obese Mice. Molecular Neurobiology, 2018, 55, 5337-5352.	1.9	61
5	Endosulfan and Cypermethrin Pesticide Mixture Induces Synergistic or Antagonistic Effects on Developmental Exposed Rats Depending on the Analyzed Behavioral or Neurochemical End Points. ACS Chemical Neuroscience, 2018, 9, 369-380.	1.7	17
6	Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Frontiers in Neuroscience, 2018, 12, 155.	1.4	185
7	Developmental Exposure to Pesticides Alters Motor Activity and Coordination in Rats: Sex Differences and Underlying Mechanisms. Neurotoxicity Research, 2018, 33, 247-258.	1.3	37
8	Sildenafil reduces neuroinflammation in cerebellum, restores <scp>GABA</scp> ergic tone, and improves motor inâ€coordination in rats with hepatic encephalopathy. CNS Neuroscience and Therapeutics, 2017, 23, 386-394.	1.9	43
9	Sex-dependent effects of developmental exposure to different pesticides on spatial learning. The role of induced neuroinflammation in the hippocampus. Food and Chemical Toxicology, 2017, 99, 135-148.	1.8	31
10	Innovation in microbiome-based strategies for promoting metabolic health. Current Opinion in Clinical Nutrition and Metabolic Care, 2017, 20, 484-491.	1.3	32
11	Sildenafil Treatment Eliminates Pruritogenesis and Thermal Hyperalgesia in Rats with Portacaval Shunts. Neurochemical Research, 2017, 42, 788-794.	1.6	0
12	Translational research in hepatic encephalopathy: New diagnostic possibilities and new therapeutic approaches. European Journal of Molecular and Clinical Medicine, 2017, 2, 39.	0.5	2
13	Reducing Peripheral Inflammation with Infliximab Reduces Neuroinflammation and Improves Cognition in Rats with Hepatic Encephalopathy. Frontiers in Molecular Neuroscience, 2016, 9, 106.	1.4	69
14	Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. Journal of Neuroinflammation, 2016, 13, 245.	3.1	63
15	Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane. Journal of Neuroinflammation, 2016, 13, 41.	3.1	99
16	Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. Journal of Neuroinflammation, 2016, 13, 83.	3.1	92
17	Modulation of GABAA receptors by neurosteroids. A new concept to improve cognitive and motor alterations in hepatic encephalopathy. Journal of Steroid Biochemistry and Molecular Biology, 2016, 160, 88-93.	1.2	5
18	Sildenafil reduces neuroinflammation and restores spatial learning in rats with hepatic encephalopathy: underlying mechanisms. Journal of Neuroinflammation, 2015, 12, 195.	3.1	68

Ana Agusti Feliu

#	Article	IF	CITATIONS
19	GR3027 antagonizes GABA _A receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy. American Journal of Physiology - Renal Physiology, 2015, 309, G400-G409.	1.6	53
20	ls Cognitive Impairment in Cirrhotic Patients Due to Increased Peroxynitrite and Oxidative Stress?. Antioxidants and Redox Signaling, 2015, 22, 871-877.	2.5	21
21	Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy. Neurochemistry International, 2015, 88, 15-19.	1.9	42
22	Rats with minimal hepatic encephalopathy show reduced cGMP-dependent protein kinase activity in hypothalamus correlating with circadian rhythms alterations. Chronobiology International, 2015, 32, 966-79.	0.9	6
23	Rats with minimal hepatic encephalopathy due to portacaval shunt show differential increase of translocator protein (18ÂkDa) binding in different brain areas, which is not affected by chronic MAP-kinase p38 inhibition. Metabolic Brain Disease, 2014, 29, 955-963.	1.4	10
24	Cerebral oedema is not responsible for motor or cognitive deficits in rats with hepatic encephalopathy. Liver International, 2014, 34, 379-387.	1.9	26
25	Pregnenolone Sulfate Restores the Glutamate-Nitric-Oxide-cGMP Pathway and Extracellular GABA in Cerebellum and Learning and Motor Coordination in Hyperammonemic Rats. ACS Chemical Neuroscience, 2014, 5, 100-105.	1.7	47
26	Chronic hyperammonemia, glutamatergic neurotransmission and neurological alterations. Metabolic Brain Disease, 2013, 28, 151-154.	1.4	31
27	Hyperammonemia alters the modulation by different neurosteroids of the glutamate–nitric oxide–cyclic GMP pathway through NMDA―GABA _A ―or sigma receptors in cerebellum <i>in vivo</i> . Journal of Neurochemistry, 2013, 125, 133-143.	2.1	16
28	Progressive reduction of sleep time and quality in rats with hepatic encephalopathy caused by portacaval shunts. Neuroscience, 2012, 201, 199-208.	1.1	21
29	Brain Region-Selective Mechanisms Contribute to the Progression of Cerebral Alterations in Acute Liver Failure in Rats. Gastroenterology, 2011, 140, 638-645.	0.6	55
30	Differential modulation of the glutamate-nitric oxide-cyclic GMP pathway by distinct neurosteroids in cerebellum in vivo. Neuroscience, 2011, 190, 27-36.	1.1	16
31	p38 MAP kinase is a therapeutic target for hepatic encephalopathy in rats with portacaval shunts. Gut, 2011, 60, 1572-1579.	6.1	63
32	Cyclic GMP pathways in hepatic encephalopathy. Neurological and therapeutic implications. Metabolic Brain Disease, 2010, 25, 39-48.	1.4	36
33	Hyperammonemia Induces Neuroinflammation That Contributes to Cognitive Impairment in Rats With Hepatic Encephalopathy. Gastroenterology, 2010, 139, 675-684.	0.6	278
34	Glutamatergic and gabaergic neurotransmission and neuronal circuits in hepatic encephalopathy. Metabolic Brain Disease, 2009, 24, 69-80.	1.4	120
35	Role of NMDA receptors in acute liver failure and ammonia toxicity: Therapeutical implications. Neurochemistry International, 2009, 55, 113-118.	1.9	56
36	Mechanisms of cognitive alterations in hyperammonemia and hepatic encephalopathy: Therapeutical implications. Neurochemistry International, 2009, 55, 106-112.	1.9	67

#	Article	IF	CITATIONS
37	Hyperammonemia Increases GABAergic Tone in the Cerebellum but Decreases It in the Rat Cortex. Gastroenterology, 2009, 136, 1359-1367.e2.	0.6	102
38	Acute liver failure-induced death of rats is delayed or prevented by blocking NMDA receptors in brain. American Journal of Physiology - Renal Physiology, 2008, 295, G503-G511.	1.6	37