
Lifang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1918800/publications.pdf Version: 2024-02-01

LIEANC CHEN

#	Article	IF	CITATIONS
1	CO2 capture by 1-ethyl-3-methylimidazolium acetate: Solubility at low pressure and quantification of chemisorption and physisorption. Journal of Molecular Liquids, 2022, 348, 118036.	4.9	11
2	Advances of Ionic Liquids and Deep Eutectic Solvents in Green Processes of Biomassâ€Derived 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	6.8	47
3	Selection of deep eutectic solvents for extractive deterpenation of lemon essential oil. Journal of Molecular Liquids, 2022, 350, 118524.	4.9	16
4	Elucidating the transition between CO2 physisorption and chemisorption in 1,2,4-triazolate ionic liquids at a molecular level. Chemical Engineering Journal, 2022, 435, 134956.	12.7	7
5	Toward reactive extraction processes for synthesizing long-chain esters: A general approach by tuning bifunctional deep eutectic solvent. Chemical Engineering Journal, 2022, 445, 136664.	12.7	13
6	Intensified synthesis of glycerol monocaprylin using ionic liquids by temperature-responsive esterification. Journal of Molecular Liquids, 2022, 359, 119255.	4.9	1
7	Z-scheme heterojunction Ag/AgBr/Bi2MoO6 with improved visible-light-induced photocatalytic activity. Bulletin of Materials Science, 2022, 45, .	1.7	3
8	Bifunctional Imidazole-Benzenesulfonic Acid Deep Eutectic Solvent for Fructose Dehydration to 5-Hydroxymethylfurfural. Catalysis Letters, 2021, 151, 445-453.	2.6	17
9	Uniform heterostructured MnO _x /MnCO ₃ /Fe ₂ O ₃ nanocomposites assembled in an ionic liquid for highly selective oxidation of 5-hydroxymethylfurfural. New Journal of Chemistry, 2021, 45, 12050-12063.	2.8	9
10	Liquid–Liquid Equilibrium for the Esterification System of Acrylic Acid with <i>n</i> -Butanol Catalyzed by Ionic Liquid [BMIm][HSO ₄] at Atmospheric Pressure. Journal of Chemical & Engineering Data, 2021, 66, 2764-2772.	1.9	12
11	Transformation of CO2 incorporated in adducts of N-heterocyclic carbene into dialkyl carbonates under ambient conditions: An experimental and mechanistic study. Chemical Engineering Journal, 2021, 413, 127469.	12.7	11
12	BrÃ,nsted Acidic Deep Eutectic Solvent Based on Imidazole and <i>p</i> -Toluenesulfonic Acid Intensified Prins Condensation of Styrene with Formaldehyde. Chemistry Letters, 2021, 50, 1194-1197.	1.3	3
13	Selective synthesis of glyceryl monolaurate intensified by boric acid based deep eutectic solvent. Catalysis Today, 2021, , .	4.4	6
14	Reactive extraction for intensifying 2-ethylhexyl acrylate synthesis using deep eutectic solvent [Im:2PTSA]. Green Energy and Environment, 2021, 6, 405-412.	8.7	26
15	Prediction of CO2 solubility in deep eutectic solvents using random forest model based on COSMO-RS-derived descriptors. Green Chemical Engineering, 2021, 2, 431-440.	6.3	57
16	Systematic screening of bifunctional ionic liquid for intensifying esterification of methyl heptanoate in the reactive extraction process. Chemical Engineering Science, 2021, 246, 116888.	3.8	17
17	Fabrication of spinel CoMn2O4 hollow spheres for highly selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Catalysis Today, 2020, 347, 39-47.	4.4	34
18	lonic liquid [BMIm][HSO4] as dual catalyst-solvent for the esterification of hexanoic acid with n-butanol. Catalysis Today, 2020, 339, 113-119.	4.4	34

#	Article	IF	CITATIONS
19	Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy and Environment, 2020, 5, 8-21.	8.7	234
20	A rate-based method for dynamic analysis and optimal design of reactive extraction: n-Hexyl acetate esterification as an example. Chinese Journal of Chemical Engineering, 2020, 28, 76-83.	3.5	4
21	Reactive Extraction Strategy for Synthesizing Dioctyl Phthalate Intensified by Bifunctional Deep Eutectic Solvent [Im:2PTSA]. Chemical Engineering and Processing: Process Intensification, 2020, 157, 108060.	3.6	5
22	A microwave assisted ionic liquid route to prepare bivalent Mn ₅ O ₈ nanoplates for 5-hydroxymethylfurfural oxidation. Nanoscale, 2020, 12, 17902-17914.	5.6	23
23	Reactive extraction for synthesizing long chain ester butyl hexanoate intensified by deep eutectic solvent. Chinese Journal of Chemical Engineering, 2020, , .	3.5	7
24	Multilevel screening of ionic liquid absorbents for simultaneous removal of CO2 and H2S from natural gas. Separation and Purification Technology, 2020, 248, 117053.	7.9	66
25	Toward Rational Functionalization of Ionic Liquids for Enhanced Extractive Desulfurization: Computer-Aided Solvent Design and Molecular Dynamics Simulation. Industrial & Engineering Chemistry Research, 2020, 59, 2093-2103.	3.7	23
26	Extractive separation of tetralin-dodecane mixture using tetrabutylphosphonium bromide-based deep eutectic solvent. Chemical Engineering and Processing: Process Intensification, 2020, 149, 107822.	3.6	17
27	Deep Deterpenation of Citrus Essential Oils Intensified by In Situ Formation of a Deep Eutectic Solvent in Associative Extraction. Industrial & Engineering Chemistry Research, 2020, 59, 9223-9232.	3.7	33
28	Bifunctional imidazoleâ€₽TSA deep eutectic solvent for synthesizing longâ€chain ester IBIBE in reactive extraction. AICHE Journal, 2019, 65, 675-683.	3.6	47
29	MnOx/P25 with tuned surface structures of anatase-rutile phase for aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran. Catalysis Today, 2019, 319, 105-112.	4.4	23
30	Carbon Dioxide Solubility in Phosphonium-Based Deep Eutectic Solvents: An Experimental and Molecular Dynamics Study. Industrial & Engineering Chemistry Research, 2019, 58, 17514-17523.	3.7	72
31	Self-Developed Fabrication of Manganese Oxides Microtubes with Efficient Catalytic Performance for the Selective Oxidation of 5-Hydroxymethylfurfural. Industrial & Engineering Chemistry Research, 2019, 58, 13122-13132.	3.7	19
32	Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process. Green Energy and Environment, 2019, 4, 154-165.	8.7	66
33	Screening deep eutectic solvents for extractive desulfurization of fuel based on COSMO-RS model. Chemical Engineering and Processing: Process Intensification, 2018, 125, 246-252.	3.6	80
34	Liquid-liquid equilibrium for the system of ionic liquid [BMIm][HSO 4] catalysed isobutyl isobutyrate formation. Journal of Chemical Thermodynamics, 2018, 122, 162-169.	2.0	33
35	Enhanced Vitamin E Extraction Selectivity from Deodorizer Distillate by a Biphasic System: A COSMO-RS and Experimental Study. ACS Sustainable Chemistry and Engineering, 2018, 6, 5547-5554.	6.7	29
36	Computer-aided design and process evaluation of ionic liquids for n-hexane-methylcyclopentane extractive distillation. Separation and Purification Technology, 2018, 196, 157-165.	7.9	59

#	Article	IF	CITATIONS
37	Ionic-Liquid-Controlled Two-Dimensional Monolayer Bi ₂ MoO ₆ and Its Adsorption of Azo Molecules. ACS Applied Nano Materials, 2018, 1, 5083-5091.	5.0	19
38	Computer-Aided Design of Ionic Liquids as Absorbent for Gas Separation Exemplified by CO ₂ Capture Cases. ACS Sustainable Chemistry and Engineering, 2018, 6, 12025-12035.	6.7	68
39	Computer-aided ionic liquid design for separation processes based on group contribution method and COSMO-SAC model. Chemical Engineering Science, 2017, 159, 58-68.	3.8	63
40	Visible-light-driven Ag2MoO4/Ag3PO4 composites with enhanced photocatalytic activity. Journal of Alloys and Compounds, 2017, 701, 350-357.	5.5	63
41	Au nanoparticles confined in hybrid shells of silica nanospheres for solvent-free aerobic cyclohexane oxidation. Journal of Materials Science, 2017, 52, 7186-7198.	3.7	18
42	Plasmonic Ag/AgClâ€modified bismuth subcarbonate with enhanced visible light photocatalytic activity. Applied Organometallic Chemistry, 2017, 31, e3777.	3.5	5
43	COSMO-descriptor based computer-aided ionic liquid design for separation processes. Chemical Engineering Science, 2017, 162, 364-374.	3.8	53
44	COSMO-descriptor based computer-aided ionic liquid design for separation processes. Part I: Modified group contribution methodology for predicting surface charge density profile of ionic liquids. Chemical Engineering Science, 2017, 162, 355-363.	3.8	52
45	Association extraction for vitamin E recovery from deodorizer distillate by <i>in situ</i> formation of deep eutectic solvent. AICHE Journal, 2017, 63, 2212-2220.	3.6	43
46	Corrosion properties of steel in 1-butyl-3-methylimidazolium hydrogen sulfate ionic liquid systems for desulfurization application. RSC Advances, 2017, 7, 48526-48536.	3.6	18
47	Highly Selective Aerobic Oxidation of 5â€Hydroxymethyl Furfural into 2,5â€Diformylfuran over Mn–Co Binary Oxides. ChemistrySelect, 2017, 2, 6632-6639.	1.5	32
48	Facile synthesis of sulfate-doped Ag3PO4 with enhanced visible light photocatalystic activity. Applied Catalysis B: Environmental, 2017, 200, 681-689.	20.2	68
49	Effect of water on extractive desulfurization of fuel oils using ionic liquids: A COSMO-RS and experimental study. Chinese Journal of Chemical Engineering, 2017, 25, 159-165.	3.5	20
50	Regenerable Subnanometer Pd Clusters on Zirconia for Highly Selective Hydrogenation of Biomass-Derived Succinic Acid in Water. Catalysts, 2016, 6, 100.	3.5	2
51	Atomically dispersed Pd catalysts for the selective hydrogenation of succinic acid to Î ³ -butyrolactone. Catalysis Today, 2016, 276, 55-61.	4.4	41
52	Microwave assisted hydrothermal synthesis of MnO ₂ ·0.5H ₂ O ion-sieve for lithium ion selective adsorption. Separation Science and Technology, 2016, 51, 874-882.	2.5	25
53	Solubility of imidazolium-based ionic liquids in model fuel hydrocarbons: A COSMO-RS and experimental study. Journal of Molecular Liquids, 2016, 224, 544-550.	4.9	41
54	Efficient Aerobic Oxidation of 5â€Hydroxymethylfurfural in Aqueous Media with Au–Pd Supported on Zinc Hydroxycarbonate. ChemCatChem, 2016, 8, 3636-3643.	3.7	50

#	Article	IF	CITATIONS
55	Effect of cation alkyl chain length on liquid-liquid equilibria of {ionic liquidsÂ+ÂthiopheneÂ+Âheptane}: COSMO-RS prediction and experimental verification. Fluid Phase Equilibria, 2016, 425, 244-251.	2.5	52
56	Selection of Imidazolium-Based Ionic Liquids for Vitamin E Extraction from Deodorizer Distillate. ACS Sustainable Chemistry and Engineering, 2016, 4, 583-590.	6.7	48
57	Highly dispersed palladium nanoclusters incorporated in aminoâ€functionalized silica spheres for the selective hydrogenation of succinic acid to γâ€butyrolactone. Applied Organometallic Chemistry, 2015, 29, 653-660.	3.5	18
58	Propene carbonate intensified cyclohexane oxidation over Au/SiO2 catalyst. Catalysis Communications, 2015, 64, 58-61.	3.3	10
59	Microwave-assisted synthesis of Ag/Ag2SO4/ZnO nanostructures for efficient visible-light-driven photocatalysis. Journal of Molecular Catalysis A, 2015, 401, 81-89.	4.8	52
60	Screening of ionic liquids for solvent-sensitive extraction –with deep desulfurization as an example. Chemical Engineering Science, 2015, 129, 69-77.	3.8	117
61	Highly Dispersed Ag2SO4 Nanoparticles Deposited on ZnO Nanoflakes as Photocatalysts. Catalysis Letters, 2014, 144, 598-606.	2.6	9
62	Simulation based ionic liquid screening for benzene–cyclohexane extractive separation. Chemical Engineering Science, 2014, 113, 45-53.	3.8	55
63	Solubility of CO ₂ in the Mixed Solvent System of Alkanolamines and Poly(ethylene glycol) 200. Journal of Chemical & Engineering Data, 2014, 59, 1781-1787.	1.9	31
64	Reprint of: Simulation based ionic liquid screening for benzene–cyclohexane extractive separation. Chemical Engineering Science, 2014, 115, 186-194.	3.8	48
65	One-pot synthesis of gold nanoparticles embedded in silica for cyclohexane oxidation. Catalysis Science and Technology, 2013, 3, 1123.	4.1	34
66	Self-assembled single-crystalline ZnO nanostructures. CrystEngComm, 2013, 15, 3780.	2.6	9
67	Highly Efficient Removal of Congo red from Wastewater by Nano-Cao. Separation Science and Technology, 2013, 48, 2681-2687.	2.5	32
68	Facile Synthesis and Active Photocatalysis of Mesoporous and Microporous TiO2Nanoparticles. European Journal of Inorganic Chemistry, 2012, 2012, 5864-5871.	2.0	24
69	Co-solvent intensification effect on aromatic alcohol oxidation. Catalysis Communications, 2012, 28, 143-146.	3.3	5
70	Solubilities of CO ₂ in Poly(ethylene glycols) from (303.15 to 333.15) K. Journal of Chemical & Engineering Data, 2012, 57, 610-616.	1.9	93
71	Controlled Synthesis of Nanoscale Icosahedral Gold Particles at Room Temperature. ChemCatChem, 2012, 4, 1662-1667.	3.7	15
72	An Overview of Mutual Solubility of Ionic Liquids and Water Predicted by COSMO-RS. Industrial & Engineering Chemistry Research, 2012, 51, 6256-6264.	3.7	148

#	Article	IF	CITATIONS
73	Deep Separation of Benzene from Cyclohexane by Liquid Extraction Using Ionic Liquids as the Solvent. Industrial & Engineering Chemistry Research, 2012, 51, 5559-5564.	3.7	66
74	Dynamics of CO ₂ Absorption and Desorption Processes in Alkanolamine with Cosolvent Polyethylene Glycol. Industrial & Engineering Chemistry Research, 2012, 51, 12081-12088.	3.7	82
75	Selective oxidation of cyclohexanol to cyclohexanone in the ionic liquid 1-octyl-3-methylimidazolium chloride. Chemical Communications, 2011, 47, 9354.	4.1	51
76	Gold Nanoparticles Intercalated into the Walls of Mesoporous Silica as a Versatile Redox Catalyst. Industrial & Engineering Chemistry Research, 2011, 50, 13642-13649.	3.7	49
77	TiO ₂ Nanoflakes Modified with Gold Nanoparticles as Photocatalysts with High Activity and Durability under near UV Irradiation. Journal of Physical Chemistry C, 2010, 114, 1641-1645.	3.1	98
78	Synthesis and surface activity of single-crystalline Co3O4 (111) holey nanosheets. Nanoscale, 2010, 2, 1657.	5.6	51
79	Heterogeneous Wheelâ€Shaped Cu ₂₀ â€Polyoxotungstate [Cu ₂₀ Cl(OH) ₂₄ (H ₂ O) ₁₂ (P ₈ W ₄₈ (Catalyst for Solventâ€Free Aerobic Oxidation of <i>n</i> 2009. 15. 7490-7497.	O <syb>18</syb>	4 ₃ /sub>)] (
80	Three-Dimensional Morphology Control during Wet Chemical Synthesis of Porous Chromium Oxide Spheres. ACS Applied Materials & Interfaces, 2009, 1, 1931-1937.	8.0	30
81	Intercalation of Aggregation-Free and Well-Dispersed Gold Nanoparticles into the Walls of Mesoporous Silica as a Robust "Green―Catalyst for <i>n</i> -Alkane Oxidation. Journal of the American Chemical Society, 2009, 131, 914-915.	13.7	119
82	Catalytic Properties of Nanoscale Ironâ€Doped Zirconia Solidâ€Solution Aerogels. ChemPhysChem, 2008, 9, 1069-1078.	2.1	39